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Motivation
‣ What is “social choice theory”? 
‣ How to aggregate possibly conflicting preferences into collective 

choices in a fair and satisfactory way? 
‣ Origins: mathematics, economics, and political science 
‣ Essential ingredients 

- Autonomous agents (e.g., human or software agents) 
- A set of alternatives (depending on the application, alternatives can be 

political candidates, resource allocations, coalition structures, etc.) 
- Preferences over alternatives 
- Aggregation functions 

‣ The axiomatic method will play a crucial role in this tutorial. 
‣ Which formal properties should an aggregation function satisfy? 
‣ Which of these properties can be satisfied simultaneously?
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Handbook of Computational Social Choice 
(Cambridge University Press, 2016) 

1. Introduction to Computational Social Choice 
Part I: Voting 

2. Introduction to the Theory of Voting 
3. Tournament Solutions 
4. Weighted Tournament Solutions 
5. Dodgson’s Rule and Young’s Rule 
6. Barriers to Manipulation in Voting 
7. Control and Bribery in Voting 
8. Rationalizations of Voting Rules 
9. Voting in Combinatorial Domains 
10. Incomplete Information and Communication in Voting 

Part II: Fair Allocation 
11. Introduction to the Theory of Fair Allocation 
12. Fair Allocation of Indivisible Goods 
13. Cake Cutting Algorithms 

Part III: Coalition Formation 
14. Matching under Preferences 
15. Hedonic Games 
16. Weighted Voting Games 

Part IV: Additional Topics 
17. Judgment Aggregation 
18. The Axiomatic Approach and the Internet 
19. Knockout Tournaments
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Syllabus

‣ Introductory examples 
‣ Rational choice theory 
‣ Arrow's impossibility 
‣ Tournament solutions 
‣ Computer-aided theorem proving 
‣ Probabilistic social choice
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Plurality
‣ Why are there different voting rules? 
‣ What’s wrong with plurality (the most widespread voting rule) 

where alternatives that are ranked first by most voters win? 
‣ Consider a preference profile with 21 voters, who  

rank four alternatives as in the table on the right. 
 

‣ Alternative a is the unique plurality winner despite 
- a majority of voters think a is the worst alternative, 
- a loses against b, c, and d in pairwise majority comparisons, and 
- if the preferences of all voters are reversed, a still wins. 

‣ In July 2010, 22 experts on social choice theory met in France 
and voted on which voting rules should be used.  
Plurality received no support at all (among 18 rules).
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Example due to Condorcet (1785)

https://hal.archives-ouvertes.fr/file/index/docid/609810/filename/cahier_de_recherche_2011-13.pdf
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More Timely Example

‣ How majority rule might have stopped Donald Trump 
(Eric Maskin and Amartya Sen, New York Times, April 2016)
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5 Common Voting Rules
‣ Plurality  
‣ Used in most democratic countries, ubiquitous 
‣ Alternatives that are ranked first by most voters 

‣ Borda  
‣ Used in Slovenia, academic institutions, Eurovision song contest 
‣ The most preferred alternative of each voter gets m-1 points, the 

second most-preferred m-2 points, etc. Alternatives with highest 
accumulated score win. 

‣ Plurality with runoff  
‣ Used to elect the President of France 
‣ The two alternatives that are ranked first by most voters face off in 

a majority runoff.
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5 Common Voting Rules 
(ctd.)

‣ Instant-runoff  
‣ Used in Australia, Ireland, Malta, Academy awards 
‣ Alternatives that are ranked first by the lowest number of voters 

are deleted. Repeat until no more alternatives can be deleted. The 
remaining alternatives win. 

‣ In the UK 2011 alternative vote referendum, people chose plurality 
over instant-runoff. 

‣ Sequential majority comparisons  
‣ Used by US congress to pass laws (aka amendment procedure) 

and in many committees 
‣ Alternatives that win a fixed sequence of pairwise comparisons 

(e.g., ((a vs. b) vs. c), etc.).
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A Curious Preference Profile
33% 16% 3% 8% 18% 22%
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‣ Plurality: a wins 

‣ Borda: b wins 

‣ Sequential majority comparisons (any order): c wins 

‣ Instant-runoff: d wins 

‣ Plurality with runoff: e wins

Example due to Michel Balinski
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Rational Choice Theory
‣ A prerequisite for analyzing collective choice  

is to understand individual choice. 
‣ Let U be a finite universe of alternatives. 
‣ A choice function f maps a feasible set A⊆U  

to a choice set f(A)⊆A. 
‣ We require that f(A)=∅ only if A=∅. 

‣ Not every choice function complies with our  
intuitive understanding of rationality. 
‣ Certain patterns of choice from varying feasible  

sets may be deemed inconsistent, e.g., choosing  
a from {a,b,c}, but b from {a,b}.
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Rationalizable Choice
‣ Binary preference relation ≽ on U 
‣ x ≽ y is interpreted as “x is at least as good as y”. 
‣ ≽ is assumed to be transitive and complete. 

‣ Best alternatives 
‣ For a binary relation ≽ and a feasible set A, 

Max(≽,A)= {x∈A | ∄y∈A such that y ⋎ x} 

‣ f is rationalizable if there exists a preference relation ≽ on U 
such that f(A)=Max(≽,A) for all A. 
‣ The previously mentioned choice function f with f({a,b,c})={a} and 

f({a,b})={b} cannot be rationalized.
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Consistent Choice
‣ It would be a nice if the non-existence of a rationalizing relation 

could be pointed out by finding inconsistencies. 
‣ f satisfies consistency if for all A,B with B⊆A,  

f(A)∩B ≠∅ implies f(B)=f(A)∩B. 
 

‣ Consequence: If x is chosen from a feasible set,  
then it is also chosen from all subsets that contain x. 

‣ Example: Plurality does not satisfy consistency  
(when scores are computed for each feasible set). 
- f({a,b,c}) = {a} and f({a,b}) = {b} 

‣ Theorem (Arrow, 1959): A choice function is rationalizable iff it 
satisfies consistency.
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From Choice to  
Social Choice

‣ N is a finite set of at least two voters. 
‣ R(U) is the set of all preference relations over U. 
‣ Every R=(≽1, ..., ≽|N|) ∈ R(U)|N| is called a preference profile. 
‣ A social choice function (SCF) is a function f that assigns a 

choice function to each preference profile. 
‣ An SCF is rationalizable (consistent) if its underlying choice 

functions are rationalizable (consistent) for all preference profiles. 
‣ We will write f(R,A) as a function of both R and A. 

‣ Let nxy = |{i∈N | x ≽i y}| and define the majority rule relation 
as 
(x RM y) ⇔ nxy > nyx.
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Condorcet’s Paradox
‣ Social choice from feasible sets of size two is easy. 
‣ The majority rule SCF is defined as f(R,{x,y}) = Max(RM,{x,y}). 
‣ Majority rule can easily be characterized using uncontroversial 

axioms (e.g., May, 1952). 
‣ Problems arise whenever there are more than two 

alternatives. 
‣ Condorcet paradox (1785): RM can be intransitive. 
‣ Alternative x is a Condorcet winner in A if  

x RM y for all y∈A\{x}. 
‣ An SCF f is a Condorcet extension if f(R,A)={x}  

whenever x is a Condorcet winner in A.
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Arrow’s Impossibility
‣ An SCF satisfies independence of infeasible alternatives (IIA) if 

the choice set only depends on preferences over alternatives 
within the feasible set. 

‣ An SCF satisfies Pareto-optimality if an alternative will not be 
chosen if there exists another alternative such that all voters 
prefer the latter to the former. 

‣ An SCF is dictatorial if there exists a voter whose most 
preferred alternative is always uniquely chosen. 

‣ Theorem (Arrow, 1951): Every rationalizable SCF that satisfies 
IIA and Pareto-optimality is dictatorial when |U|≥3. 
‣ Nipkow (2009) has verified a proof of Arrow’s theorem using Isabelle. 
‣ Tang & Lin (2009) reduced the statement to a finite base case that  

was solved by a computer.

15
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What now?
‣ Rationalizability (or, equivalently, consistency) is incompatible 

with collective choice when |U|≥3. 
‣ Dropping non-dictatorship is unacceptable. 
‣ Dropping Pareto-optimality offers little relief (Wilson, 1972). 
‣ Dropping IIA offers little relief (Banks, 1995). 

‣ In this tutorial, we will consider two escape routes from 
Arrow’s impossibility: 
‣ SCFs that satisfy weaker notions of consistency 

- Top cycle, uncovered set, Banks set, tournament equilibrium set 
‣ Randomized SCFs 

- Random dictatorship, maximal lotteries
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What now?

‣ Two further escape routes (not considered in this tutorial) 
‣ Restricted domains of preferences 

- dichotomous preferences: approval voting 
- single-peaked preferences: median voting 

‣ Replace consistency with variable-electorate consistency 
- scoring rules  

- e.g., plurality, Borda 
- Smith and Young’s characterization  

- Kemeny’s rule 
- Young and Levenglick’s characterization 
- computational intractability (NP-hard, even for four voters)
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Interlude:  
Algorithms & Complexity

‣ One of the most important resources of an algorithm is time. 
‣ An algorithm is called efficient if its running time is 

polynomial in its input size n. 
‣ Running time is bounded by nk for constant k 

‣ An essential question is whether a given computational 
problem admits an efficient algorithm. 
‣ If so, a natural follow-up task is to study and optimize the 

asymptotic and/or exact running time of this algorithm. 
‣ Why polynomial running time?

18
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Polynomial vs. Exponential 
Algorithms

19

10 20 30 40 50 60

n 0.00001 sec. 0.00002 sec. 0.00003 sec. 0.00004 sec. 0.00005 sec. 0.00006 sec.

n2 0.0001 sec. 0.0004 sec. 0.0009 sec. 0.0016 sec. 0.0025 sec. 0.0036 sec.

n3 0.001 sec. 0.008 sec. 0.027 sec. 0.064 sec. 0.125 sec. 0.216 sec.

n5 1 sec. 3.2 sec. 24.3 sec. 1.7 min. 5.2 min. 13.0 min.

2n 0.001 sec. 1.0 sec. 17.9 min. 12.7 days 35.7 years 366 centuries

3n 0.059 sec. 58 min. 6.5 years 3855 centuries 2·108 centuries 1.3·1013 
centuries

[Garey & Johnson, 1979]
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Efficient Algorithms
‣ How can we find an efficient algorithm? 
‣ Sometimes standard techniques are successful,  

e.g., greedy algorithms, divide and conquer, dynamic 
programming, linear programming, reduction to problems that can 
be solved efficiently. 

‣ Sometimes new insights into the structure of the problem at hand 
are required. 

‣ How can we show that no efficient algorithm exists? 
‣ In almost all cases, we can’t. 
‣ Frequently, we can prove something almost as powerful:  

NP-hardness.
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P and NP
NP-

complete‣ P (problems that can be solved in  
polynomial time on a deterministic  
Turing machine) 
‣ Problems in P admit efficient algorithms. 

‣ NP (problems that can be solved in  
polynomial-time on a non-deterministic  
Turing machine) 
‣ Solutions can be verified in polynomial time. 
‣ NP-hard problems 

- at least as hard as every problem in NP  
(with respect to polynomial-time reductions) 

- There are no efficient algorithms for NP-hard problems if P≠NP. 
‣ NP-complete problems (NP-hard and in NP)

NP

21

P



Computational Social Choice Felix Brandt22

[Garey & Johnson, 1979]
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Hard and Easy Problems
‣ How to show that problem A is 
‣ in P? 

- polynomial-time algorithm for A 
‣ NP-hard? 

- Reduction proof 
- Formulate A as a decision problem. 
- Choose an NP-hard decision problem B. 
- Construct an efficiently computable function f, which maps every instance b of 

B to an instance f(b) of A such that f(b) is true iff b is true. 

‣ SAT (Boolean satisfiability problem) 
‣ NP-complete, in particular in conjunctive normal form, even if every 

clause contains only three literals (3SAT).  
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ ... 

‣ How to deal with NP-hard problems? 
- Restriction, Parametrization, Heuristics, Randomization, Approximation

25

B A

b
f(b)



Computational Social Choice Felix Brandt

Weakly Consistent SCFs

26



Computational Social Choice Felix Brandt

Tournaments
‣ For a given preference profile R, a feasible set A and 

majority rule RM define a directed graph (A,RM). 
‣ We say that b dominates a if b RM a. 
‣ Every asymmetric directed graph is induced by some preference 

profile (McGarvey, 1953). 
‣ A majoritarian SCF is an SCF whose output only depends 

on (A,RM). 
‣ For simplicity, we will assume that individual preferences are anti-

symmetric and that |N| is odd. Hence, (A,RM) is a tournament. 
‣ SCF f is said to be finer than SCF g if f ⊆ g. 

‣ Dominion D(x)={y∈A | x RM y} 
‣ Dominators D̅(x)={y∈A | y RM x}

27
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Expansion

Weak expansion

Strong retentiveness

Retentiveness

Majoritarianness

Non-dictatorship IIA Pareto-optimality Rationalizability/ 
Consistency Arrow’s Impossibility

|A|=2
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The Top Cycle
‣ Consistency can be weakened to expansion:  

B⊆A and f(A)∩B ≠∅ implies f(B) ⊆ f(A). 

‣ Theorem (Bordes, 1976): There is a unique finest 
majoritarian SCF satisfying expansion: the top cycle. 

‣ A dominant set is a nonempty set of alternatives B⊆A such 
that for all x∈B and y∈A\B, x RM y. 
‣ The set of dominant sets is totally ordered by set inclusion  

(Good, 1971). 
‣ Hence, every tournament contains a unique minimal dominant set 

called the top cycle (TC). 
‣ TC is a Condorcet extension.

29
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Examples

30

c

ba

f

e d

ba

c d

ba

c d

TC(A,RM)={c,e,f}TC(A,RM)={a,b,c} TC(A,RM)={a,b,c,d}
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Transitive Closure
‣ The essence of Condorcet’s paradox and Arrow’s 

impossibility is that majority rule fails to be transitive. 
‣ Why not just take the transitive (reflexive) closure RM*? 

‣ Theorem (Deb, 1977): TC(A,RM) = Max(RM*,A). 
‣ Consequences 
‣ TC itself is a cycle. It is the source component in the directed 

acyclic graph of strongly connected components. 
‣ Linear-time algorithms for computing TC using Kosaraju’s or 

Tarjan’s algorithm for finding strongly connected components 
- Alternatively, one can initialize working set B with all alternatives of 

maximal outdegree and then iteratively add all alternatives that dominate 
an alternative in B until no more such alternatives can be found.
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Top Cycle and  
Pareto-Optimality

‣ The top cycle is very large. 
‣ In fact, it is so large that it fails to be Pareto-optimal  

when there are more than three alternatives  
(Ferejohn & Grether, 1977).  
 

‣ Since Pareto-optimality is an essential ingredient of Arrow’s 
impossibility, this escape route is (so far) not entirely 
convincing. 
‣ Although, technically, Arrow’s theorem only requires Pareto-

optimality for two-element sets (which the top cycle satisfies).
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Expansion

Weak expansion

Majoritarianness

Non-dictatorship IIA Pareto-optimality Rationalizability/ 
Consistency Arrow’s Impossibility

Top Cycle (TC)
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The Uncovered Set

‣ Expansion can be further weakened to weak expansion:  
f(A)∩f(B) ⊆ f(A∪B). 

‣ Theorem (Moulin, 1986): There is a unique finest majoritarian 
SCF satisfying weak expansion: the uncovered set. 

‣ Given a tournament (A,RM), x covers y (x C y), if D(y)⊂D(x). 
‣ Proposed independently by Fishburn (1977) and Miller (1980) 
‣ Transitive subrelation of majority rule 
‣ The uncovered set (UC) consists of all uncovered alternatives, i.e., 

UC(A,PM) = Max(C,A).

34
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Examples

35
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UC(A,RM)={a,b,c}

TC(A,RM)={a,b,c,d}

UC(A,RM)={a,b,c}
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Properties of the  
Uncovered Set

‣ Since expansion ⇒ weak expansion, UC⊆TC. 
‣ UC is a Condorcet extension. 

‣ UC satisfies Pareto-optimality. 
‣ Theorem (B. et al., 2016): UC is the largest majoritarian SCF 

satisfying Pareto-optimality. 
‣ How can the uncovered set be efficiently computed? 
‣ Straightforward O(n3) algorithm that computes the covering 

relation for every pair of alternatives 
‣ Can we do better than that?

36



Computational Social Choice Felix Brandt

Uncovered Set Algorithm
‣ Equivalent characterization of UC 
‣ Theorem (Shepsle & Weingast, 1984): UC consists precisely of all 

alternatives that reach every other alternative in at most two 
steps. 
- Such alternatives are called kings in graph theory. 

‣ Hence, UC can be computed by squaring the tournament’s 
adjacency matrix. 
‣ Fastest known matrix multiplication algorithm  

(Le Gall, 2014): O(n2.3728639) 
‣ Just slightly faster than Vassilevska Williams, 2011: O(n2.372873) 
‣ Based on Coppersmith & Winograd (1990): O(n2.376) 
‣ Matrix multiplication is believed to be feasible in linear time (O(n2)).  

37

http://arxiv.org/abs/1401.7714
http://theory.stanford.edu/~virgi/matrixmult-f.pdf
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Uncovered Set Algorithm 
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Strong retentiveness

Majoritarianness
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Top Cycle (TC)

Uncovered Set (UC)
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Banks Set
‣ Weak expansion can be weakened to strong retentiveness: 

f(D̅(x)) ⊆ f(A) for all x∈A. 

‣ Theorem (B., 2011): There is a unique finest majoritarian 
SCF satisfying strong retentiveness: the Banks set. 

‣ A transitive subset of a tournament (A,RM) is a set of 
alternatives B⊆A such that RM is transitive within B. 

‣ Let Trans(A,RM) = {B⊆A | B is transitive}. 

‣ The Banks set (BA) consists of the maximal elements of all 
inclusion-maximal transitive subsets (Banks, 1985), i.e.,  
BA(A,RM) = {Max(RM,B) | B∈Max(⊇,Trans(A,RM))}

40

Jeffrey S. Banks 
1958-2000 

Jeffrey S. Banks
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Examples
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ba

c d

BA(A,RM)={a,b,c}

UC(A,RM)={a,b,c}

a b c

d

e f g

TC(A,RM)={a,b,c,d,e,f,g}

UC(A,RM)={a,b,c,d}

BA(A,RM)={a,b,c}

(All missing edges are pointing downwards.)
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Properties of the Banks Set
‣ Since expansion ⇒ weak expansion ⇒ strong retentiveness, 

BA⊆UC⊆TC. 
‣ As a consequence, BA is a Condorcet extension and satisfies Pareto-

optimality. 
‣ Random alternatives in BA can be found in linear time by 

iteratively constructing maximal transitive sets. 
‣ Yet, computing the Banks set is NP-hard (Woeginger, 2003) 

and remains NP-hard even for 5 voters (Bachmeier et al., 2013). 
‣ Strong retentiveness can be further weakened to retentiveness:  

f(D̅(x)) ⊆ f(A) for all x∈f(A).
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Expansion
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Strong retentiveness

Retentiveness

Majoritarianness

Non-dictatorship IIA Pareto-optimality Rationalizability/ 
Consistency Arrow’s Impossibility

Top Cycle (TC)

Uncovered Set (UC)

Banks Set (BA)
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Tournament  
Equilibrium Set

‣ Let f be an arbitrary choice function. 
‣ A non-empty set of alternatives B is f-retentive if  

f(D̅(x))⊆B for all x∈B. 

‣ Idea: No alternative in the set should be “properly”  
dominated by an outside alternative. 

‣ f is a new choice function that yields the union of all 
inclusion-minimal f-retentive sets. 
‣ f satisfies retentiveness. 

‣ The tournament equilibrium set (TEQ) of a tournament is 
defined as TEQ=TEQ. 
‣ Recursive definition (unique fixed point of ring-operator) 
‣ Theorem (Schwartz, 1990): TEQ⊆BA.

44
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Example
‣ {a,b,c} is the unique minimal TEQ-retentive set. 
‣ TEQ(D̅(a)) = TEQ({c}) = {c} 
‣ TEQ(D̅(b)) = TEQ({a,e}) = {a} 
‣ TEQ(D̅(c)) = TEQ({b,d}) = {b} 
‣ TEQ(D̅(d)) = TEQ({a,b}) = {a} 
‣ TEQ(D̅(e)) = TEQ({a,c,d}) = {a,c,d}

45

b c

a

d e

A thick edge from y to x  
denotes that y ∈ TEQ(D̅(x)).
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Properties of TEQ
‣ Computing TEQ is NP-hard (B. et al., 2010) and remains NP-

hard even for 7 voters (Bachmeier et al., 2015). 
‣ The best known upper bound is PSPACE! 

‣ Theorem (Laffond et al., 1993; Houy 2009; B., 2011; B. and Harrenstein, 2011): 
The following statements are equivalent: 
‣ Every tournament contains a unique minimal TEQ-retentive set (Schwartz’ Conjecture, 1990). 
‣ TEQ is the unique finest majoritarian SCF satisfying retentiveness.  
‣ TEQ satisfies monotonicity. 
‣ TEQ satisfies independence of unchosen alternatives. 
‣ TEQ is stable (and thus set-rationalizable). 
‣ TEQ is group-strategyproof (for Kelly’s preference extension). 

‣ State of affairs in 2012: All or nothing  
Either TEQ is a most appealing SCF or it is severely flawed.

46

‣ Theorem (B., Chudnovsky, Kim, Liu, Norin, Scott, Seymour, and Thomassé, 2013): 
Schwartz’s conjecture is false.
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Properties of TEQ
‣ Theorem (B., Chudnovsky, Kim, Liu, Norin, Scott, Seymour, and Thomassé, 2013): 

Schwartz’s conjecture is false. 
‣ non-constructive proof using the probabilistic method 
‣ neither a counter-example nor its size can be deduced from proof 
‣ smallest counter-example of this type requires 10136 alternatives 

‣ Schwartz’s conjecture holds for ≤12 alternatives (B. et al., 2010). 
‣ Schwartz’s conjecture holds for ≤14 alternatives (Yang, 2016). 
‣ Found no counter-example in extensive computer simulations 
‣ constructed counter-example with 24 alternatives (B. & Seedig, 2013) 

‣ In principle, TEQ is severely flawed, but the existence of a 
counter-example seems to have no practical consequences 
whatsoever. 
‣ This casts doubt on the axiomatic method.
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‣ Theorem (B., Chudnovsky, Kim, Liu, Norin, Scott, Seymour, and Thomassé, 2013): 
Schwartz’s conjecture is false.
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Weakly Consistent SCFs

48

Top Cycle (1971) TC expansion O(n2)

Uncovered Set (1977) UC weak expansion O(n2.38)

Banks Set (1985) BA strong retentiveness 2O(n)

Tournament Equilibrium Set (1990) TEQ (retentiveness) 2O(n)

TC
UC
BA
TEQ
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Probabilistic SCFs

49
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Consistency and Lotteries 

‣ Consistency for probabilistic SCFs can be defined as 
follows: 
‣ Let p be a lottery and A, B feasible sets such that p’s support is 

contained in both A and B.  
‣ Then, p is chosen from A and from B iff it is chosen from A∪B. 

‣ This condition allows for attractive probabilistic SCFs, e.g., 
‣ Random dictatorship (RD), and 
‣ Maximal lotteries (ML).

50
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Probabilistic Social Choice
‣ Agents have complete and transitive preference relations ≽i 

over a finite set of alternatives A. 
‣ A social decision scheme f maps a preference profile  

(≽1, …, ≽n) to a lottery Δ(A). 
 
 
 
 

‣ Special case: Random assignment (aka house allocation).  
A is the set of deterministic assignments. 
‣ Agents are indifferent between all assignments in which they are 

assigned the same object.
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efficiency strategyproofness

No agent can be made better off 
without making another one worse off

No agent can obtain a more preferred 
outcome by misreporting his preferences



efficiency strategyproofness

Only Dictatorship  
strict preferences; Gibbard (1973), Satterthwaite (1975)



efficiency strategyproofness

there is no p∈Δ(A) such that  
     p ≽i f(∙) for all i∈N and  
     p ⋎i f(∙) for some i∈N

there is no ≽i’ such that  
    f(≽i’,∙) ⋎i f(≽i,∙)

Extend preferences over alternatives to  
(incomplete) preferences over lotteries!
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⅓ b + ⅔ c



efficiency strategyproofness

there is no p∈Δ(A) such that  
     p ≽i f(∙) for all i∈N and  
     p ⋎i f(∙) for some i∈N

weak: there is no ≽i’  such that f(≽i’,∙) ⋎i f(≽i,∙)

strong: for all ≽i’ it holds that f(≽i,∙) ≽i f(≽i’,∙)

Extend preferences over alternatives to  
(incomplete) preferences over lotteries!

🤔
a⋎b⋎c

a b

a
b c

c

1

⅔ a + ⅓ b

a b

a
b c

c

1

⅓ b + ⅔ c
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Sure Thing (ST)

‣ p ≽ST q   ⇔   ∀x∈supp(p)\supp(q), y∈supp(q): x⋎y 
                ∧  ∀x∈supp(p), y∈supp(q)\supp(p): x⋎y 
                ∧  ∀x∈supp(p)∩supp(q): p(x)=q(x) 
‣ loosely based on Savage’s sure-thing principle 
‣ inspired by non-probabilistic preference extensions due to 

Fishburn (1972) and Gärdenfors (1979) 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a ⋎ b ⋎ c
p= (⅔ ⅓ 0 )
q= ( 0 ⅓ ⅔ )

p

q
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Bilinear Dominance (BD)

‣ p ≽BD q   ⇔   [∀x,y∈A: x⋎y ⇒ p(x) q(y) ≥ p(y) q(x)] 
‣ for every pair of alternatives, it’s more likely that p yields the better 

alternative and q the worse alternative 
‣ p is preferred to q for every consistent SSB utility function 
‣ Fishburn (1984), Aziz et al. (2015)  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a ⋎ b ⋎ c
p= (½ ½ 0 )
q= (⅓ ⅓ ⅓ )

∀≽: ≽ST ⊆ ≽BD
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Stochastic Dominance (SD)

‣ p ≽SD q   ⇔   ∀x∈A: ∑ p(y) ≥ ∑ q(y) 
‣ for every alternative, it’s more likely that p yields something better 
‣ p yields more expected utility for every consistent vNM function 
‣ Bogomolnaia & Moulin (2001) and many others 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y≽x y≽x

a ⋎ b ⋎ c
p= (½ 0 ½ )
q= ( 0 ½ ½ )

∀≽: ≽ST ⊆ ≽BD ⊆ ≽SD
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Pairwise Comparison (PC)

‣ p ≽PC q   ⇔   ∀x∈A: ∑ p(x) q(y) ≥ ∑ q(x) p(y) 
‣ it’s more likely that p yields a better alternative 
‣ minimizes ex ante regret 
‣ ≽PC is a complete relation for all ≽ 
‣ Blavatskyy (2006), Aziz et al. (2015)  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x≽y x≽y

∀≽: ≽ST ⊆ ≽BD ⊆ ≽SD ⊆ ≽PC

a ⋎ b ⋎ c
p= (⅔ 0 ⅓ )
q= ( 0 1 0 )
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SD-efficiency SD-strategyproofness

ST-strategyproofness

PC-efficiency PC-strategyproofness

BD-strategyproofness

Only Random Dictatorship  
strict preferences; Gibbard (1977)
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SD-efficiency SD-strategyproofness

ST-strategyproofness

PC-efficiency PC-strategyproofness

BD-strategyproofness

No assignment rule  
strict preferences; equal treatment of equals; Bogomolnaia & Moulin (2001)

w
eaker

ex post efficiency

strong  
SD-strategyproofness



SD-efficiency SD-strategyproofness

ST-strategyproofness

PC-efficiency PC-strategyproofness

BD-strategyproofness

Probabilistic Serial (PS) assignment rule  
strict preferences, Bogomolnaia & Moulin (2001)

w
eaker

ex post efficiency

strong  
SD-strategyproofness



SD-efficiency SD-strategyproofness

ST-strategyproofness

PC-efficiency PC-strategyproofness

BD-strategyproofness
w

eaker
ex post efficiency

strong  
SD-strategyproofness

Utilitarian rule (≈ approval voting/ maximal lotteries) 
dichotomous preferences, Bogomolnaia & Moulin (2004)
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No anonymous and neutral social decision scheme  
Aziz et al. (2014)
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SD-efficiency SD-strategyproofness

ST-strategyproofness

PC-efficiency PC-strategyproofness

BD-strategyproofness

No anonymous and neutral social decision scheme  
Brandl et al. (2016)
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SD Impossibility

‣ requires at least 4 agents and at least 4 alternatives 
‣ more than 31 million possible preferences profiles 

‣ was shown with the help of a computer (SMT solver) 
‣ proof has been extracted from the solver’s output and 

brought into human-readable form 
‣ operates on 47 canonical preference profiles and is very 

tedious to check 
‣ has been verified by a computer (Isabelle/HOL)
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Random Serial Dictatorship
‣ Extension of random dictatorship to weak preferences 
‣ pick an ordering of agents uniformly at random 
‣ sequentially narrow down the set of alternatives by letting each 

agent restrict it to his most preferred ones.  
‣ Widespread assignment rule (aka random priority)
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1 1 1
a,c 
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b,c 
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a 
b 
c

 ½ a + ⅙ b + ⅓ c

1,2,3:  c 
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Random Serial Dictatorship
‣ RSD is strongly SD-strategyproof. 
‣ RSD violates SD-efficiency. 
‣ first observed by Bogomolnaia & Moulin (2001) in assignment domain 
‣ 1/2 a + 1/2 b ⋎iSD p for all i∈N. 
 
 
 
 
 
 

‣ Computing RSD probabilities is #P-complete (Aziz et al., 2013). 
‣ Even checking whether the probability of a given alternative exceeds 

some fixed λ∈(0,1) is NP-complete.
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Maximal Lotteries
‣ Kreweras (1965) and Fishburn (1984) 
‣ Rediscovered by Laffond et al. (1993), Felsenthal and Machover 

(1992), Fisher and Ryan (1995), Rivest and Shen (2010) 
‣ Let g(x,y) = nxy - nyx be the majority margin of x and y. 
‣ Alternative x is a (weak) Condorcet winner if g(x,y)≥0 for all y. 
‣ Extend g to lotteries: g(p,q) = ∑x,y p(x)∙q(y)∙g(x,y) 
‣ Expected majority margin 

‣ p is a maximal lottery if g(p,q)≥0 for all q. 
‣ Randomized (weak) Condorcet winner 
‣ Always exists due to Minimax Theorem (v. Neumann, 1928)
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‣ Two alternatives  
 
 
 
 

‣ g can be interpreted as a symmetric zero-sum game. 
‣ Maximal lotteries are mixed minimax strategies (or Nash equilibria). 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a b c
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⅗ a + ⅕ b + ⅕ c

Maximal Lotteries
Peter C. FishburnGermain Kreweras
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‣ Maximal lotteries are almost always unique. 
‣ Always unique for odd number of voters (Laffond et al., 1997) 

‣ ML does not require asymmetry, completeness, or even 
transitivity of preferences. 

‣ ML can be efficiently computed via linear programming. 
‣ In the assignment domain, maximal lotteries are known as 

popular mixed matchings (Kavitha et al., 2011). 
‣ ML is PC-efficient.
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Maximal Lotteries
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‣ ML violates BD-strategyproofness. 
 
 
 
 
 
 
 
 

‣ ML satisfies ST-strategyproofness.

Maximal Lotteries
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Intermediate Summary
‣ No social decision scheme satisfies moderate degrees of 

efficiency and strategyproofness. 
‣ RSD is very strategyproof, but only a little efficient. 
‣ ML is very efficient, but only a little strategyproof. 
‣ Further results 
‣ RSD and ML are ST-group-strategyproof, but not SD-group-

strategyproof. 
‣ No anonymous and neutral social decision scheme is ex post 

efficient and BD-group-strategyproof, even when preferences are 
dichotomous. 

‣ ML can be characterized using consistency conditions.
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Population-Consistency

‣ first proposed by Smith (1973), Young (1974), Fine & Fine (1974) 
‣ also known as “reinforcement” (Moulin, 1988) 
‣ famously used for the characterization of scoring rules and Kemeny
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Whenever two disjoint electorates agree on a lottery,  
 this lottery should also be chosen by the union of both electorates.
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Agenda-Consistency

‣ Sen (1971)’s α (contraction) and γ (expansion)  
‣ at the heart of numerous impossibilities (e.g., Blair et al., 1976; 

Sen, 1977; Kelly, 1978; Schwartz, 1986)
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½ a + ½ b ½ a + ½ b ½ a + ½ b

A lottery should be chosen from two agendas  
iff it is also chosen in the union of both agendas.
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Composition-Consistency

‣ Laffond, Laslier, and Le Breton (1996) 
‣ cloning consistency precursors: Arrow and Hurwicz (1972), 

Maskin (1979), Moulin (1986), Tideman (1987)
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Composed preference profiles are treated component-wise. 
In particular, alternatives are not affected by the cloning of other alternatives.
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Non-Probabilistic  
Social Choice

‣ All scoring rules satisfy population-consistency. 
(Smith 1973; Young, 1974) 

‣ No Condorcet extension satisfies population-consistency. 
(Young and Levenglick, 1978) 

‣ Many Condorcet extensions satisfy composition-
consistency. (Laffond et al., 1996) 

‣ No Pareto-optimal scoring rule satisfies composition-
consistency. (Laslier, 1996) 

‣ Population-consistency and composition-consistency are 
incompatible in non-probabilistic social choice. (Brandl et al., 2016) 

‣ ML is the only probabilistic SCF that satisfies population-
consistency and composition-consistency. (Brandl et al., 2016)
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Participation

‣ cannot be satisfied by resolute Condorcet extensions (Moulin, 
1988) 

‣ satisfied by maximal lotteries with respect to the PC extension
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No agent can obtain a more preferred lottery  
by abstaining from an election.
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Maximal Lotteries Random Serial 
Dictatorship

Borda’s 
Rule

population-consistency ✅ only for strict prefs ✅

agenda-consistency ✅ ✅ —

cloning-consistency ✅ 
even composition-consistency

✅ —

Condorcet-consistency ✅ — —

(SD-) strategyproofness — ✅ 
even strongly

—

(ST-) group-strategyproofness ✅ ✅ —

(SD-) participation ✅ 
even PC-group-participation

✅ 
even very strongly

✅

(SD-) efficiency ✅
only for strict prefs  

otherwise only ex post ✅

efficient computability ✅
#P-complete 

in P for strict prefs ✅
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pnyx.dss.in.tum.de

An easy-to-use voting tool that 
features Borda’s rule, 

Kemeny’s rule, and  
maximal lotteries

http://pnyx.dss.in.tum.de

