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Basic Definitions and Notation

Consider alternatives that can be described in binary code:
There are K binary issues (‘propositions’) which can take on
the value 1 (yes’) or 0 (‘no’).
Thus, an alternative is a binary sequence of length K :

x = (x1, ..., xK ).

There may be restrictions, i.e. not all binary sequences may be
feasible. Let

X ⊆ {0, 1}K

denote the set of feasible alternatives.
Sometimes, we will refer to a (feasible) alternative as a
(feasible) view.



Example: Asymmetric Binary Relations

Suppose that there is a set of three candidates A = {a, b, c},
with the following three issues:

Issue 1: ‘a better than b’
Issue 2: ‘b better than c ’
Issue 3: ‘c better than a’

Assume that (binary) preference judgements are connected
and asymmetric, i.e. negating the statement ‘a better than b’
means ‘b better than a.’
Then, an alternative (a ‘view’) is a connected and asymmetric
binary relation, i.e. a complete and directed graph.
For instance, the view (1, 1, 0) corresponds to the binary
relation {(a, b), (b, c), (a, c)} ⊆ A2, i.e. to the transitive
preference ordering a � b � c .
By contrast, the view (1, 1, 1) corresponds to the binary
relation {(a, b), (b, c), (c , a)} ⊆ A2, i.e. to the cyclic relation
a � b, b � c , c � a.



Example: Strict Preferences

With the set of candidates A = {a, b, c} and the issues:
Issue 1: ‘a better than b’
Issue 2: ‘b better than c ’
Issue 3: ‘c better than a’

the space of all linear preference orderings (i.e. asymmetric,
transitive and connected binary relations) is given by the
feasible set

X lin
A = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

In general, let X lin
A denote the space of all linear preference

orderings over the finite set A of candidates.



Example: General Reflexive Binary Relations

Again, let A = {a, b, c}, but now with the following six issues:
Issue 1: ‘a at least as good as b’
Issue 2: ‘b at least as good as a’
Issue 3: ‘b at least as good as c ’
Issue 4: ‘c at least as good as b’
Issue 5: ‘a at least as good as c ’
Issue 6: ‘c at least as good as a’

A view is now a general, possibly incomplete, binary relation.
By convention, always assume reflexivity.
For instance, the view (1, 1, 0, 0, 0, 0) corresponds to the
(weak) partial order that declares a and b as indifferent, and
all other pairs of alternatives as incomparable.
The view (1, 1, 1, 0, 1, 0) corresponds to the weak order
a ∼ b � c .



The Doctrinal Paradox

p q d = p ∧ q
Judge 1 yes no no
Judge 2 no yes no
Judge 3 yes yes yes
Majority yes yes yes or no?

p : defendant had a contractual obligation
q : the contract was legally valid
d = p ∧ q : legal doctrine

Kornhauser and Sager, 1986; Pettit, 2001; List and Pettit, 2002, 2011.



Example: Truth-Functional Decisions

A binary decision d is truth-functionally determined by a set of
‘premises’ {p1, ..., pm}, i.e. there are m + 1 issues.
For instance, d = p ∧ q as in the doctrinal paradox; if p
corresponds to issue 1, q to issue 2 and d = p ∧ q to issue 3,
the set of feasible views is given by

X d
p∧q = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

As another example, consider d = p ↔ q; then,

X d
p↔q = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

Dokow and Holzman, 2009; Mongin, 2008; Nehring and Puppe, 2008.



Example: Selecting Members of a Committee

K candidates for membership in a committee. For each
candidate, the question is: should k ∈ K be selected as a
member, or not?
Suppose that the committee has to contain at least I and at
most J members, where 0 ≤ I ≤ J ≤ K , then

XK ;I ,J = {x ∈ {0, 1}K : I ≤ ||x || ≤ J},

where ||x || =
∑K

k=1 x
k .

For instance,

X3;1,2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)},
X3;1,3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.



Example: Resource Allocation

Suppose that there is a money amount M ≥ 0 that has to be
spent on L public goods. If φ` ≥ 0 is the amount spent on
public good `, feasibility requires

L∑
`=1

φ` = M

Binary issues: ‘spend at least j cents on good `?’ for
j = 1, ...,M and ` = 1, ..., L.
For instance, with M = 4ct and L = 3 goods, the allocation
that assigns 2ct to good 1, and 1ct to goods 2 and 3,
respectively, corresponds to the binary sequence

(1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) .



Critical Fragments

Unless otherwise noted, all following concepts and results are taken from
Nehring and Puppe, 2002, 2007 and 2010.

A ‘partial’ view w ∈ {0, 1}J where J ⊆ {1, ...,K} is called a
fragment; the set J is called the support of w , and #J is the
length of w .
A fragment w is forbidden (given X ) if there is no feasible
view x ∈ X such that x coincides with w on its support.
A fragment w is called critical (given X ) if it is minimally
forbidden, i.e. if it is forbidden, and no proper subfragment of
w is forbidden.
We will assume that X is in no issue trivial, i.e. for all
k = 1, ...,K there exist x , y ∈ X such that xk = 0 and yk = 1.
In other words, fragments of length 1 are never forbidden.



Aggregation

Let N = {1, ..., n} be a (finite) set of individuals.
An aggregation rule is a mapping f : X n → {0, 1}K . The
view f (x1, ..., xn) is the collective view corresponding to the
profile (x1, ..., xn) of individual views.
For instance, with n odd, the (issue-wise) majority rule fmaj
is defined as follows. For all k = 1, ...,K ,

[fmaj(x1, ..., xn)]
k =

{
0 if #{i ∈ N : xk

i = 0} > n
2

1 if #{i ∈ N : xk
i = 0} < n

2

An aggregation rule f is consistent if f (X n) ⊆ X , i.e. if f
produces a feasible collective view for all profiles of feasible
individual views.



Consistency of Issue-Wise Majority Voting

Theorem

Let X ⊆ {0, 1}K be a space of feasible views. Then, the issue-wise
majority rule fmaj with an odd number of individuals is consistent
on X if and only if all critical fragments of X have length 2.

Notation: If w is a critical fragment, denote by w−j the (non-forbidden)
fragment that results from w by negating the j-th issue. Moreover, write
x A w−j if x ∈ X extends w−j .

Proof (of necessity). Suppose that w is a critical fragment of length > 2.
W.l.o.g. suppose that w = (w1,w2,w3, ∗, ..., ∗). By criticality, there exist
x , x ′, x ′′ ∈ X such that x A w−1, x ′ A w−2 and x ′′ A w−3. If 1/3 of the
population endorses x , x ′, x ′′, respectively, fmaj yields w on its support. Thus,
fmaj is not consistent on X .



Median Spaces

Given a space X ⊆ {0, 1}K of feasible views and three
elements x , y , z ∈ X , say that y is (weakly) between x and z ,
denoted by y ∈ [x , z ], if y coincides with x and z in all issues
in which they coincide, i.e. if, for all k = 1, ...,K ,

xk = zk ⇒ yk = xk = zk .

Geometrically, y is between x and z if and only if y is
contained in the ‘subcube’ spanned by x and z .
A space X ⊆ {0, 1}K is called a median space if any triple of
elements x , y , z ∈ X admits an element xmed ∈ X , their
median, that is between any pair of the triple, i.e.

xmed ∈ [x , y ] ∩ [x , z ] ∩ [y , z ].



Median Spaces: Characterization

Observation
If a triple admits a median, then the median is uniquely determined.

Proposition

A space X ⊆ {0, 1}K of feasible views is a median space if and only
if all critical fragments of X have length 2.

Proof. Suppose w = (w1,w2,w3, ∗, . . . , ∗) is a critical fragment of length > 2.
Let x , y , z ,∈ X be such that x A w−1, y A w−2 and z A w−3, then
[x , y ] ∩ [x , z] ∩ [y , z] ∩ X = ∅, i.e. X is not a median space.

Conversely, suppose x , y , z ∈ X are such that [x , y ] ∩ [x , z] ∩ [y , z] ∩ X = ∅.
W.l.o.g. we may assume that x = (1, 0, 0, ∗, . . . , ∗), y = (0, 1, 0, ∗, . . . , ∗) and
z = (0, 0, 1, ∗, . . . , ∗). But then there is a critical fragment containing (0, 0, 0).



Properties of Aggregation Rules

In the following, let f : X n → {0, 1}K be an aggregation rule.
f is consistent if f (X n) ⊆ X
f satisfies sovereignty if f (X n) ⊇ X .
f satisfies unanimity if, for all x ∈ X , f (x , ..., x) = x .
f satisfies independence if, for all
(x1, ..., xn), (y1, ..., yn) ∈ X n, and all k = 1, ...,K ,(
for all i ∈ N, xk

i = yk
i

)
⇒ [f (x1, ..., xn)]

k = [f (y1, ..., yn)]
k .



Properties of Aggregation Rules
(continued)

f satisfies positive responsiveness if, for all x1, ..., xn, all
i ∈ N, all k = 1, ...,K , and all α ∈ {0, 1},

[f (x1, ..., xi , ..., xn)]
k = α ⇒ [f (x1, ..., x(α)i , ..., xn)]

k = α,

where x(α)`i = x`i for all ` 6= k , x(α)ki = α if this is compatible
with feasibility, and x(α)ki = xk

i otherwise.
f satisfies monotone independence if, for all
(x1, ..., xn), (y1, ..., yn) ∈ X n, all k = 1, ...,K , and all
α ∈ {0, 1},(

for all i ∈ N, xk
i = α⇒ yk

i = α
)

implies [f (x1, ..., xn)]
k = α⇒ [f (y1, ..., yn)]

k = α.



Winning Coalitions of Agents

Definition (Families of Winning Coalitions)

A family of winning coalitions of agents is a non-empty collection
of non-empty subsets of agents that is closed under taking supersets
(i.e. if W ⊆ N is winning, then W ′ is winning for all W ′ ⊇W ).

Definition (Structure of Winning Coalitions)

A structure of winning coalitions W assigns two families of
winning coalitions Wk

α,Wk
1−α, α ∈ {0, 1}, to each issue k such

that, for all k ∈ K :

W ∈ Wk
α ⇔ (N\W ) /∈ Wk

1−α. (∗)
Intuition:

The coalitions W in Wk
0 are ‘winning’ for 0 in issue k in the sense that if all members of W

agree on 0 in issue k they can force this as the collective result.
Similarly, the coalitions W in Wk

1 are ‘winning’ for 1 in issue k.
“⇒” of condition (*) says that the set of agents N cannot be partitioned into a coalition that is
winning for 1 and a coalition that is winning for 0 in the same issue.
“⇐” of condition (*) says that at least one coalition in a bi-partition of N must be winning
either for 1 or for 0 in each issue.



Issue-Wise Aggregation: ‘Voting by Issues’

Definition (Voting by Issues)

Voting by issues (with the structure W of winning coalitions) is
the aggregation rule f : X n → {0, 1}K defined as follows. For all
(x1, . . . , xn), k ∈ K and α ∈ {0, 1},

[f (x1, . . . , xn)]
k = α ⇔ {i ∈ N : xk

i = α} ∈ Wk
α.

Theorem
An aggregation rule f : X n → X satisfies sovereignty and monotone
independence if and only if it is (consistent) voting by issues.
(Proof: Exercise)



The Intersection Property

Definition (Intersection Property)

A structure of winning coalitions W satisfies the Intersection
Property if, for every critical fragment w = (w1, . . . ,wJ) on
J ⊆ K , and every selection W j ∈ W j

w j for all j ∈ J,⋂
j∈J

W j 6= ∅

Theorem
Voting by issues with structure of winning coalitions W is
consistent if and only if W satisfies the Intersection Property.



Intersection Property: Proof

Proof. “⇒” (by contraposition) Let w = (w1, . . . ,wJ) be a critical fragment.
For all j ∈ J consider any selection W j ∈ W j

w j . Suppose that
⋂

j∈J W
j = ∅.

Then, for all i ∈ N, there exists ji such that i /∈W ji . For each i pick a feasible
xi ∈ X such that xi A w−ji . By construction, if i ∈W j then j 6= ji , hence
x j
i = w j , i.e. W j ⊆ {i : x j

i = w j}. Thus, {i : x j
i = w j} ∈ W j

wj for all j ∈ J,
i.e. voting by issues with the given structure of winning coalitions is
inconsistent.

“⇐” (by contraposition) Let voting by issues with W be inconsistent, i.e. for
some (x1, . . . , xn), we have f (x1, . . . , xn) 6∈ X. Then, there exists a critical
fragment w = (w1, . . . ,wJ) such that w v f (x1, . . . , xn) 6∈ X. Suppose now
that the Intersection Property is satisfied, and let W j ∈ W j

w j be a selection of
winning coalitions for all j ∈ J. Since

⋂
j∈J W

j 6= ∅, there exists i0 ∈W j for all
j ∈ J, but then xi0 w w, contradicting the fact that w is a critical fragment.



Conditional Entailment

Definition
For all α, α′ ∈ {0, 1} and distinct k , k ′ ∈ K , say that (k , α) directly
conditionally entails (k ′, α′), written as (k , α) ≥0 (k ′, α′), if there
exists a critical fragment w such that wk = α and wk ′ = 1− α′.
Moreover, denote by ≥ the transitive closure of ≥0, and say that
(k , α) conditionally entails (k ′, α′) if (k , α) ≥ (k ′, α′).

Intuition:

(k, α) ≥0 (k′, α′) means that, fixing some other issues in the way prescribed by some critical
fragment w , α in issue k is inconsistent with 1− α′ in issue k′.

Observation
As already noted, in median spaces all critical fragments have length 2.
This means that all entailments are unconditional. Is it also true that
that all entailments are direct? (Proof or counterexample: Exercise).



Contagion

Lemma
Suppose that the structure of winning coalitions W satisfies the
Intersection Property, and (k , α) ≥ (k ′, α′), then Wk

α ⊆ Wk ′
α′ .

Proof. By transitivity, it suffices to show that (k, α) ≥0 (k ′, α′) implies
Wk
α ⊆ Wk′

α′ . Thus, let w = (w1, ...,wJ) be a critical fragment with wk = α

and wk′
= 1− α′, and consider any W ∈ Wk

α and any W ′ ∈ Wk′
1−α′ . By the

Intersection Property, W ∩W ′ 6= ∅. Thus, by the following observation,
Wk
α ⊆ Wk′

α′ .

Observation

By condition (*) above, we have, for all k ∈ K,

Wk
α = {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ Wk

1−α}. (∗∗)



Veto Lemma

Lemma
Suppose that the structure of winning coalitions W satisfies the
Intersection Property, and that there exists a critical fragment of
length ≥ 3, say w = (w1,w2,w3, ∗, . . . , ∗). If W1

1−w1 ⊆ W2
w2 ,

then {i} ∈ W3
1−w3 for some agent i ∈ N.

Proof. Let W̃1 be a minimal element of W1
w1 , and let i ∈ W̃1. By (**),

(W̃ c
1 ∪ {i}) ∈ W1

1−w1 . By assumption, W1
1−w1 ⊆ W2

w2 , hence
(W̃ c

1 ∪ {i}) ∈ W1
w2 . Consider any W3 ∈ W3

w3 ; by the Intersection Property,
W̃1 ∩ (W̃ c

1 ∪ {i}) ∩W3 6= ∅. But this implies that i ∈W3 for all W3 ∈ W3
w3 ,

hence by (**), {i} ∈ W3
1−w3 .



Main Impossibility Result

Definition (Total Blockedness)

An aggregation space X is called totally blocked if the conditional
entailment relation is complete, i.e. if for all issues k , k ′ and all
α, α′ ∈ {0, 1}, (k , α) ≥ (k ′, α′).

Theorem
An aggregation space X admits non-dictatorial aggregation rules
that are monotonely independent, sovereign and consistent if and
only if X is not totally blocked.



Proof of Main Impossibility Theorem

Proof. It is easily seen that total blockedness of X implies the existence of a
critical fragment of length ≥ 3. By the contagion lemma, Wk

α =Wk′
α′ for all

k, k ′ ∈ K and all α, α′ ∈ {0, 1}. By the veto lemma, there exists i ∈ N who
has a veto, hence in fact is a dictator.
Conversely, suppose that X is not totally blocked. Define

K 0 := {k ∈ K : (k, 1) ≡ (k, 0)},
K+ := {k ∈ K : (k, 1) > (k, 0)},
K− := {k ∈ K : (k, 0) > (k, 1)},
K∗ := {k ∈ K : neither (k, 1) ≥ (k, 0) nor (k, 0) ≥ (k, 1)}.

Clearly, {K 0,K+,K−,K∗} forms a partition on K.

Case 1: If K+ ∪ K− 6= ∅, then set Wk
0 = 2N \ {∅} and Wk

1 = {N} if k ∈ K+,
and Wk

0 = {N} and Wk
1 = 2N \ {∅} if k ∈ K−. Moroever, choose a voter

i ∈ N and set Wk
0 =Wk

1 = {W ⊆ N : i ∈W } for all k ∈ K 0 ∪ K∗ (if the
latter set is non-empty). Clearly, this defines a non-dictatorial rule. It can be
verified that the Intersection Property is satisfied.



Proof of Main Impossibility Theorem
(continued)

Case 2: Suppose K+ ∪ K− = ∅ and that both K 0 and K∗ are non-empty.
Then, specify two different “local” dictators i and j on K 0 and K∗, respectively.
One can show that every critical fragment must have support either entirely in
K 0, or entirely in K∗. Hence, by the Intersection Property, the rule just defined
is consistent and non-dictatorial.

Case 3: Suppose now that K∗ is also empty, i.e. K = K 0. Since X is not
totally blocked, K is partitioned into at least two equivalence classes with
respect to the equivalence relation ≡. Since, obviously no critical fragment can
meet two different equivalence classes, we can specify different dictators on
different equivalence classes while satisfying the Intersection Property.

Case 4: Suppose finally that K 0 is also empty, i.e. K = K∗. Then one can
show that there exists a view x ∈ X such that any critical fragment coincides
with x in at most one issue. Using the Intersection Property, this implies that
the (non-dictatorial) unanimity rule defined by Wk

xk = 2N \ {∅} and
Wk

1−xk = {N}, for all k ∈ K, is consistent.



Examples of Dictatorial Domains

Proposition (with Arrow’s Theorem as Corollary)

The space X lin
A is totally blocked (Nehring, 2003). The space Xweak

A
is totally blocked (Dietrich and List, 2007).

Proposition
For all K ≥ 3, the spaces XK ;1,K−1 are totally blocked.

Proposition
The resource allocation problem is totally blocked if L ≥ 3.



Oligarchies

Definition (Semi-Blockedness)

An aggregation space X is called semi-blocked, if for all issues
k , k ′ and all α, α′ ∈ {0, 1}, either (k , α) = (k ′, α′) or
(k , α) = (k ′, 1− α′), where ‘=’ is the symmetric part of the
conditional entailment relation.

Theorem (Nehring, 2006)

An aggregation space X admits non-oligarchic aggregation rules
that are monotonely independent, sovereign and consistent if and
only if X is not semi-blocked.

Examples of semi-blocked aggregation spaces: partial orders,
equivalence relations, all truth-functional decisions.



Existence of Anonymous Aggregation Rules

Definition (Blockedness)

An aggregation space X is called blocked, if for some issue k ,
(k , α) = (k , 1− α).

Theorem
An aggregation space X admits, for all n, anonymous aggregation
rules that are monotonely independent, sovereign and consistent if
and only if X is not blocked.

Examples of non-blocked aggregation spaces: all median spaces,
the spaces XK ;1,K and XK ;0,K−1.



Generalized Single-Peaked Preferences

Now interpret feasible views as alternatives, and assume that
individuals have preferences over the set X of feasible views.
Since X admits a notion of ‘betweenness,’ we can define:

Definition
A linear ordering �i with top element x∗i ∈ X is (generalized)
single-peaked on X if, for all distinct views y , z ∈ X ,

y ∈ [x∗i , z ] ⇒ y �i z .

Let S(X ) denote set of all generalized single-peaked orderings on X .

Remark

All what follows remains valid if one replaces the space S(X ) of all generalized
single-peaked preferences by a rich domain of generalized single-peaked pref. In
fact, all results hold with weak orders that admit a unique top alternative.



Special Cases

If X ‘linear,’ then S(X ) standard space of single-peaked preferences
(Black, 1948; Arrow, 1951; Moulin, 1980).

If X = {0, 1}K , then S(X ) space of separable preferences (Barberà,
Sonnenschein, Zhou, 1991).

If X = {ek}k∈K , where ek is the k-th unit vector (0, .., 0, 1, 0, ..., 0), then
S(X ) is the unrestricted domain.

If X ‘cyclic’, then S(X ) space of preferences that are single-peaked on a
circle (Schummer and Vohra, 2002).

If X ‘multi-dimensionally linear,’ then S(X ) space of multi-dimensionally
single-peaked preferences (Barberà, Gul, Stacchetti, 1993).



Strategy-Proof Social Choice Functions

Definition
A social choice function (scf) is a mapping F : Dn → X that
assigns an alternative to each profile of individual preferences from
some domain D.
A scf F is strategy-proof on D if, for all i ∈ N, all
(�1, ...,�n) ∈ Dn, and all �′i ∈ D,

F (�1, ...,�i , ...,�n) <i F (�1, ...,�′i , ...,�n).

A scf F is sovereign if F (Dn) = X , and it is dictatorial if there
exists h ∈ N such that, for all (�1, ...,�n),

F (�1, ...,�n) = x∗h := top alternative of �h .



‘Tops Only’

Proposition (‘Tops-onlyness’)

Suppose that F : S(X )n → X is sovereign and strategy-proof, then
F depends only on the vector (x∗1 , ..., x

∗
n ) of the respective top

alternatives of (�1, ...,�n).

based on: Barberà, Massó and Neme, 1997.

Corollary (Representation by an aggregation function)

Thus, every sovereign and strategy-proof scf F : S(X )n → X can
be represented by an aggregation function f : X n → X such that

F (�1, ...,�n) = f (x∗1 , ..., x
∗
n ),

where (x∗1 , ..., x
∗
n ) are the top alternatives of (�1, ...,�n).



Strategy-Proofness is Equivalent to Monotone Independence

Theorem
Let F : S(X )n → X be represented by the aggregation function
f : X n → X. Then, F is sovereign and strategy-proof if and only if
f is sovereign and monotonely independent.



The Gibbard-Satterthwaite Theorem Generalized

Theorem
The generalized single-peaked domain S(X ) admits non-dictatorial,
sovereign and strategy-proof social choice functions if and only if X
is not totally blocked.

Corollary (The Gibbard-Satterthwaite Theorem)

If X has at least three elements, every sovereign and strategy-proof
scf over the unrestricted preference domain on X is dictatorial.

Proof. The unrestricted domain is generalized single-peaked on the
space X = {ek}k∈K ,which is totally blocked if K ≥ 3.



More Domain Characterization Results

Theorem
The generalized single-peaked domain S(X ) admits non-oligarchic,
sovereign and strategy-proof social choice functions if and only if X
is not semi-blocked.

Theorem
The generalized single-peaked domain S(X ) admits, for each
number n of voters, anonymous, sovereign and strategy-proof social
choice functions if and only if X is not blocked.

Theorem
The generalized single-peaked domain S(X ) admits sovereign and
strategy-proof social choice functions that are neutral with an odd
number of individuals [and anonymous] if and only if X is a median
space.
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