
Assignment 

1



House allocation problems

 In some matching markets, only one side of the 

market has preferences (or we care mostly about 

the preferences of one side). 

 Examples

 students picking housing on campus

 students picking freshman seminars

 sports teams picking players out of college
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House allocation problem

 N agents and N houses

 Each agent has strict preferences over houses.

 Goal: assign each agent to a house.

 What would be a “good” outcome?



Desirable Allocation?

3 agents 𝑎1, 𝑎2, 𝑎3 and 

3 houses ℎ1, ℎ2, ℎ3
 𝑃(𝑎1): ℎ1 > ℎ2 > ℎ3
 𝑃(𝑎2): ℎ3 > ℎ2 > ℎ1
 𝑃(𝑎3): ℎ1 > ℎ3 > ℎ2

𝑎1 ℎ1

𝑎2 ℎ2

𝑎3 ℎ3
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Efficient Allocation

 A (Pareto) efficient allocation is one the 

exhausts all gains from trade –

=> i.e. there is no alternative allocation that 

makes all better off and at least one strictly 

better off.

 Any improvement attempt must make 

someone worse off

Individual Rationality: No worse assignment 

than own house.
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Efficient Allocations

3 agents 𝑎1, 𝑎2, 𝑎3 and 

3 houses ℎ1, ℎ2, ℎ3
 𝑃(𝑎1): ℎ1 > ℎ2 > ℎ3
 𝑃(𝑎2): ℎ3 > ℎ2 > ℎ1
 𝑃(𝑎3): ℎ1 > ℎ3 > ℎ2

𝑎1 ℎ1

𝑎2 ℎ2

𝑎3 ℎ3
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(Random) Serial Dictatorship

 Each agent gets a priority (perhaps randomly 

assigned as in the housing draw).

 Agents pick houses in order of their priority.

Theorem. The serial dictatorship is (ex post) efficient 

(i.e. no mutually agreeable trades afterwards) and 

strategy-proof.
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Proof

Strategy-proofness:

 Agent with first pick gets her preferred house, 
so clearly no incentive to lie.

 Agent with second pick gets her preferred 
house among remaining houses, so again no 
reason to lie.

 and so on…

8



Proof

Efficiency:

 Agent with priority one doesn’t want to trade.

 Given that she is out, agent with priority two 

doesn’t want to trade.

 And so on….
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Top Trading Cycles

 Now imagine that agents start with a house, but the 
original allocation might not be efficient.

 Gale’s TTC algorithm

 Each person points to most preferred house

 Each house points to its owner

 This creates a directed graph, with at least one cycle.

 Remove all cycles, assigning people to the house they are 
pointing at.

 Repeat using preference lists where the assigned houses 
have been deleted.
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TTC in Pictures
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House allocation from 

endowments :The Core

 Consider a candidate assignment in the house 

allocation problem: 

 A coalition of agents blocks if, from their initial 

endowments, there is an assignment among 

themselves that they all prefer to the candidate 

assignment.

 The core consists of all feasible unblocked 

assignments. 
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Core Allocation?

3 agents 𝑎1, 𝑎2, 𝑎3 and 

3 houses ℎ1, ℎ2, ℎ3
 𝑃(𝑎1): ℎ1 > ℎ2 > ℎ3
 𝑃(𝑎2): ℎ3 > ℎ2 > ℎ1
 𝑃(𝑎3): ℎ1 > ℎ3 > ℎ2

 𝑎𝑖 owns ℎ𝑖 for 𝑖 =
1,2,3

𝑎1 ℎ1

𝑎2 ℎ2

𝑎3 ℎ3
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Properties of TTC

Theorem. The outcome of the TTC algorithm is the 

unique core assignment in the housing market.
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Proof

Core

 Blocking coalition cannot involve only those matched at 

round one (all agents get first choice).

 Blocking coalition cannot involve only those matched in 

first two rounds (can’t improve round one guys, and to 

improve round two guys, need to displace round one 

guy).

 And so on by induction.



Proof

Uniqueness: 

 Consider doing something other than assigning the 

round one individuals their TTC houses. They would get 

together and block.

 Fixing the assignments for the individuals cleared at 

round one of the TTC, consider an assignment that 

differs for the individuals that would be assigned at round 

2 of TTC.

 Same argument applies. And inductively for rounds 

3,4…. 
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Incentives in the TTC

Theorem. The TTC algorithm is strategy-proof.

Proof. For any agent assigned at round n if truthful

 No change in his report can give him a house that was 

assigned in earlier rounds.

 No house assigned in a later round will make him better 

off.

 So no benefit to doing anything but reporting truthfully.
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Combining the problems: On-

campus housing

 What if some individuals start with houses but some 

do not?

 A common problem in allocating student housing

 Many universities, e.g. Caltech, CMU, Duke, Michigan, 

Northwestern, Penn use a variation of random serial 

dictatorship.

 Let’s see how it works.
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House allocation with existing 

tenants

 Problem components

- newcomers

- existing tenants

- priority order

 Main application: Graduate housing

Examples: Michigan, Princeton, Rochester, 
Stanford, CMU, MIT, etc.



What is a good mechanism?

1. Individual rationality (existing tenants)

2. Fairness (priority order)

3. Efficiency (e.g. Pareto)

4. Incentive compatibility    (no gaming)



The Model
 Agents:     I={1, 2,…, n}

- Existing tenants: IE
- Newcomers: IN

 Houses    H={h1, h2,…, hm}  

- Occupied houses: IO
- Vacant houses: IV

 A list of strict preferences R=(Ri)i€I

 A priority order   f:{1,…,n} -> I



 A house allocation problem with existing tenants is a 
pair consisting of

▪ List of agents’ preferences (R)

▪ A priority order (f)

 An allocation is a list s.t.

▪ every agent is assigned at most one house

▪ no house is assigned to more than one agent



IE={1,2},  IN ={3,4},    HO={h1, h2 }, HV={ a, b, c}      

R1            R2 R3         R4

b c        a        h2 

h1 a b        c

a h2 h1          h1

h2             h1            c        a

c           b         h2 b

Example:

f

4

2

5

3

1



What is a mechanism?

Allocations

Mechanism

(R, f)

(R, f)

(R, f)

µ

1

µ

2

µ

3



Properties of Mechanisms

1. Individual Rationality: No existing tenant is 

assigned a house which is worse for him than 

his current house.

i.e., for all R, all i є IE, φi(R) Ri  hi



Properties of Mechanisms

2. Fairness: An agent prefers someone else’s 

assignment (to his own) only if either of the 

following holds:

▪ The other agent is an existing tenant who is 

assigned his own house

▪ The other agent has higher priority



Properties of Mechanisms

3. Pareto Efficiency: It is not possible to find an 

alternative allocation that makes

▪ All agents at least as well off

▪ At least one agent strictly better off

However, an inefficient mechanism need not 

always select inefficient outcomes!!!



Properties of Mechanisms
4. Strategy-proofness (Incentive compatibility):

It is always a dominant strategy for each agent to 

truthfully reveal his preferences.

i.e., for all R, all i є I, and all Ri’ : φi(R) Ri φi(R’i , R-i) 

Example: Boston’s old school system



Real-life Mechanisms

1. Random serial dictatorship with squatting rights

(CMU, Duke, Harvard, Northwestern, Upenn, etc. )

 Each existing tenant initially decides whether to participate or not. If 

participates, gives up his current house

 A priority ordering f of participants is randomly chosen 

 First agent (according to f) is assigned his favorite house, second agent is 

assigned his favorite house among the remaining houses, and so on.



Random serial dictatorship with 

squatting rights

Properties

1. Individual rationality  

2. Fairness

3. Pareto efficiency

4. Incentive compatibility



Real-life Mechanisms
2. MIT-NH4 Mechanism

1.      The first agent is tentatively assigned his top choice among all houses, the 
next agent is tentatively assigned his top choice among the remaining 
houses, and so on, until a squatting conflict occurs. 

2. A squatting conflict occurs if it is the turn of an existing tenant but every 
remaining house is worse than his current house. That means someone 
else, the conflicting agent, is tentatively assigned the existing tenant's 
current house. When this happens, solve the squatting conflict as follows:

▪ Assign the existing tenant his current house and remove him 

▪ Erase all tentative assignments starting after the conflicting agent

3.     The process is over when there are no houses or agents left. 



Example:
IE={1,3,4},  IN ={2,5},    HO={h1, h3 ,h4},   HV ={a, b}

R1 R2 R3 R4 R5

h3           h4 b         h3 h4

h4 b          h3 b b                 

b        a          h4 h4 h3

h1 h3               a a

h1 a        h1 h1 h1

a              

f

1

2

3

4

5



IE={1,3,4},  IN ={2,5},                                      HO={h1, h3 ,h4},   HV ={a, b}

f

4

1

2

3

5

tenant

newcomer

vacant

occupied

h4
h1

h3

a
b



f

4

1

2

3

5

tenant

newcomer

vacant

occupied

h4

h3

a
b

R1

h3           

h4

b 

h1

a  

h3

h4

b

R2

h4

b        

a

h3

h1

R3

b

h3

h4

a

h1

4

h4

R4

h3          

b          

h4

a 

h1

b

h3

3

b

h

1

a

h

1



MIT-NH4 Example: Final outcome

R1 R2 R3 R4 R5

h3           h4 b         h3 h4

h4 b          h3 b b                 

b        a          h4 h4           h3

h1 h3               a a

h1 a        h1 h1 h1

a              



MIT-NH4 Mechanism

Proposition 2:

1. Individual rationality  

2. Fairness

3. Pareto efficiency

4. Incentive compatibility



A mechanism from recent 

theory
3. TTC  Mechanism  

 Assign the first agent (according to f) his top choice, the second agent his top 
choice among the remaining houses, and son on, until someone demands the 
house of an existing tenant. 

 If at that point the existing tenant whose house is demanded is already 
assigned a house, then do not disturb the procedure. 

 Otherwise insert him to the top and proceed. Similarly, insert any existing 
tenant who is not already served at the top of the line once his or her 
house is demanded.

 If at any point, a loop forms, (it is formed by exclusively existing tenants 
and each of them demands the house of the tenant next in the loop), 
remove all agents in the loop by assigning them the houses they 
demand, and proceed. 



IE={3,4,5,6},  IN ={1,2},                              HO={h3, h4 ,h5 ,h6},   HV ={a, b}

f

tenant

newcomer

vacant

occupied

h5

h3

h4

a
b

1

2

3

4

5

6

h6

ba

h6

R1           

b     

a 

: 
R2

b

h6

:

R4

b

a

h3

:

R5

a

h4

:

R3

h6

a

h5

:

R6

b

a

h6

:

6

5

4 h3

h5

h4



Top Trading Cycles Mechanism

Properties

1. Individual rationality  

2. Fairness

3. Pareto efficiency

4. Incentive compatibility



SUMMARY

Individually 

rational

Fair

Pareto 

efficient

Strategy-

proof

TT

C

RSDwSR

MIT-NH4



Motivating Question 

Given the nice features of GSSM, can we also 

find a way to also use it for house allocation?

Answer: Two issues

1. Single priority order

2. Individual rationality

Use the same priority order          

Insert the existing tenant  

to the top of the order



Going back to house allocation

Proposition 3:

4. Modified Gale-Shapley Mechanism

1. Individual rationality  

2. Fairness

3. Pareto efficiency

4. Incentive compatibility



An interesting coincidence

Theorem 1: The MIT-NH4 mechanism and the modified 

Gale-Shapley mechanism are equivalent (i.e., they 

always give the same outcome). 

Going back in history: Roth (1984) had showed that 

NRMP matching mechanism since 1951 = Gale-Shapley 



The best fair and individually rational

mechanism

Corollary: The MIT-NH4 mechanism (as well as the 

modified Gale-Shapley mechanism) Pareto dominates 

any other fair and individually rational mechanism.



Trade-offs between properties

Proposition 1: There is no mechanism which is      

individually rational, fair, and Pareto efficient.

Individually 

rational

Fair

Pareto 

efficient

Strategy-

proof



Kidney Exchange
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Kidney Exchange

 Transplants are standard treatment for patients with 

failed kidneys.

 Shortage of kidneys

 Over 101,170 patients in the waitlist.

 3000 patients added each month

 Some statistics from 2013

 16,896 transplants from deceased donors

 5733 transplants from living donors

 4453 patients died on the waiting list.
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Resolving the shortage

 Buying and selling kidneys - illegal.

 Section 301 of National Organ Transplant Act

 “it shall be unlawful for any person to knowingly acquire, 

receive or otherwise transfer any human organ for valuable 

consideration for use in human transplantation.”

 Increase cadaveric kidneys (e.g. make donation the 

default).

 Focus: increasing live donor kidneys.
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Donor Kidneys

 Deceased donors: a centralized mechanism has 

long been in use – prioritizing patients higher on 

the waitlist.

 Living donors: mostly friends and relatives of a 

patient – numbers have been increasing

1988 1998 2008

All donors 5,693 9,761 10,920

Deceased 3,876 5,339 5,992

Live 1,817 4,422 4,928
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Compatibility

 Donor kidney must be compatible with patient

 Blood type match

 O type patients can receive O kidneys

 A type patients can receive O or A kidneys

 B type patients can receive O or B kidneys

 AB type patients can receive any blood type kidney

 Also tissue type match (HLA compatibility).

 Potential inefficiency: if a patient has a donor but 

can’t use the donor’s kidney, the donor goes home.
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Paired Exchange

 Paired exchange: match two donor-patient pairs...

 Donor 1 is compatible with Patient 2, not Patient 1

 Donor 2 is compatible with Patient 1, not Patient 2

 List exchange: match one incompatible donor-

patient pair and the waiting list

 Donor of incompatible pair donates to patient at the top of 

the waiting list.

 Patient of incompatible pair goes to the top of the wait list.

 Altruistic (good Samaritan) donations.
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Do we know this problem?

 Problem seems very similar to house allocation with 

existing tenants.

 Roth, Sonmez and Unver (2004, QJE)

 The problems are (essentially) equivalent

 TTC can be used to efficiently assign kidneys.

 In 2004, RSU and doctors in Boston established first 

clearinghouse for New England.
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http://optn.transplant.hrsa.gov/resources/KPDPP.asp
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Exchange in practice

 In practice, the problem has a few twists...

 US doctors think of compatibility as 0-1, which makes 

preferences different than the strict ranking in the housing 

model. 

 At first, doctors wanted to limit to pairwise trades, and rule 

out list exchange.

 Compatible donors may not participate.

 A slightly simplified algorithm can be used.

54



Three-Way exchange

 It is possible but tricky to do multi-way exchanges, 

but they can help (esp. three-way).

 Pair is x-y if patient and donor have blood type x-y.

 Consider a population consisting of

 O-B, O-A, A-B, A-B, B-A (blood type incompatible)

 A-A, A-A, A-A, B-O (HLA incompatible)

 Assume there is no HLA problem across pairs

 Two-way (A-B,B-A), (A-A,A-A), (O-B,B-O)

 Three-way: (A-B,B-A), (A-A,A-A,A-A), (B-O,O-A,A-B).
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Gains from Three-Way

 An odd number of A-A pairs can be transplanted.

 O-type donors can facilitate three transplants rather 

than two.

 In practice, O-type donors are short relative to 

demand, so useful to leverage them.

 Four-way exchanges also can help…
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Donor Chains

 In July 2007, Alliance for paired donations started 
an “Altruistic Donor Chain”

 Altruistic donor in Michigan donated kidney to 
woman in Phoenix.

 Husband of Phoenix woman gave kidney to woman 
in Toledo.

 Her mom gave kidney to patient A in Columbus, 
whose daughter simultaneously gave kidney to 
patient B in Columbus.

 Now patient B’s sister is looking to donate…. 
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Good Samaritan don
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School Choice
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Background

 Neighborhood schools

 school choice – flexibility for 

families, and competition between 

schools

 Today: designing school choice programs.
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Design Objectives

 Efficient placements

 “Fair” procedure and outcomes

 Easy to understand and use

61



Approaches

 Abdulkadiroglu and Sonmez (2003, AER) - many 
placement mechanisms are flawed.

 Boston, New York, Chicago, San Francisco 
reformed their mechanisms.

 Active area of research

 designing improved mechanisms,

 studying the performance of mechanisms in use,

 also, partially random nature of allocations has facilitated 
studies of school effectiveness in training students.
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School Choice Model

 Set of students S and schools C

 Each student can go to one school

 Each school c can admit qc students

 Each student has strict preferences over schools. 

 Each school has a strict “priority order” over students.

 “Many-to-one” version of the marriage model.
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Matching

Matching μ is a function on the set of agents 

and schools such that

1. μ(s) is a school

2. μ(c) is a set of students

3. 𝑠 ∈ 𝜇 𝑐 ↔ 𝑐 = 𝜇(𝑠)

4. |𝜇 𝑐 |≤ qc
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Stability

Stability for school choice: 

 individual rationality – no student wants to drop out 

and no school wants to kick out a student.

 non-wastefulness – no student can find a better 

school with an empty seat (school finds the student 

acceptable)

 no blocking pair – no student can find a better 

school which will displace someone to accept that 

student.
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Stability as Fairness

 Individual rationality means no student can be 

forced to attend a school they don’t want to attend, 

and no school can be forced to take a student they 

view as unqualified.

 No blocking pair means no justified envy. That is, 

there is no student s who gets a school they prefer 

less than c, only to see a student with lower priority 

end up at c.
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I.         BOSTON MECHANISM 

(IMMEDIATE ACCEPTANCE)

 Step 1: Each school considers those students who listed it as her first choice. Those 
students with the highest priority for that school are permanently assigned to it. The 
rest are rejected. School quotas are updated.      

In general;    

 Step k, k>1: Each school with available seats considers those students who listed it 
as her k-th choice. Those students with the highest priority for that school are 
permanently assigned to it. The rest are rejected. School quotas are updated.   

 Note: allocation at every step is final  



Boston Mechanism in Pictures
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Example: Gaming under Boston 

CBA2

B

.

.

3

B

A

C

1

A

.

.

Step 1 1 2 , 3 

FullFull

.

.

2

3

CBA

3

1

Step 2

Step 3 3



Problems with Boston

 Boston mechanism is not strategy-proof.

 If you don’t put your priority school high on your 

rank list, you may lose it! 

Example: you want school A most and B second. You have 

high priority at B but not A. Both are in high demand so to 

get in to either, you need to rank it first and have high 

priority. It will be best to rank B first.

 This was well-understood by Boston parents, and 

frequently showed up on parent message boards.
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Quote from media (St. 

Petersburg Times)

“Make a realistic, informed selection on the school you list 

as your first choice. It’s the cleanest shot you will get at a 

school, but if you aim too high, you might miss. 

Here is why: If the random computer selection rejects your 

first choice, your chances of getting your second choice 

is school are greatly diminished. That’s because you fall 

in line behind everyone who wanted your second choice 

as their first choice. You can fall even farther back in line 

as you get bumped down to your third, fourth and fifth 

choices.”



Problems with Boston

 Boston mechanism is also unfair…

 Doesn’t necessarily lead to stable outcomes.

Example: Consider the situation on the prior slide and 

suppose the family decides to take a risk, puts A first, and 

then ends up at much less preferred school C. The 

outcome is not stable because the family has high priority 

at B and prefers it to C.  

 Disadvantaged families that don’t know how to 

game the system.
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Boston in Practice

 Students in K,6,9 submit preferences

 Students have priorities as follows

 Students already at a school.

 Students in the walk zone and siblings at school

 Students with siblings at school

 Students in the walk zone

 Everyone else

 Abdulkadiroglu et al. found that 19% listed two over-

demanded schools as top two choices and about a 

quarter ended up unassigned – ugh. 
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 Theorem: Under complete info, the set of NE 

of Boston are equivalent to the stable set.

 Theorem: Under incomplete info, there are 

settings where the set of BNE of Boston 

dominate the DA outcome.
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II. Deferred Acceptance

 What about the student proposing DA?

 We know this leads to a stable match.

 And the stable matching that is best for all the students, 

and they are the ones whose welfare we care about.

 Plus it’s strategy-proof for the students, and we may not be 

worried about schools if priorities are clearly stated.

 So our earlier results indicate that student-proposing 

DA has attractive properties…
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But is it efficient?

 Stable matchings can be inefficient

 Consider students s1,s2,s3, and schools A, B

 P(s1): B > A

 P(s2): A

 P(s3): A > B

 Student-proposing DA => (s1,A), s2, (s3,B)

 But every student prefers: (s1,B), s2, (s3,A)

 P(A): s1 > s2 > s3

 P(B): s3 > s1

 Schools have one slot
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Deferred Acceptance: An example

CBA2

B
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3
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1

A

B

C

Step 1

Step 2

Step 3

Step 4

1 2
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1
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Stability and Efficiency

 A stable matching, even a student-optimal stable 

matching, may not be Pareto efficient if students can 

trade positions.

 Q1: If we want to find a matching that’s Pareto 

efficient for students, how could we do it? 

 Q2: if we find a matching that’s Pareto efficient for 

students, will it necessarily be stable?
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TTC for School Choice?

 Schools are different from houses because

 A school has multiple positions not just one

 A student can have priority at multiple schools.

 Still, we can adapt TTC to this setting

 Abdulkadiroglu and Sonmez (2003) explain how.
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TTC for School Choice

 TTC Algorithm

 Each student points to its top-ranked school

 Each school points to its top-priority student

 Cycles are identified and removed: that is, any matched 

student is assigned and removed and the school to which 

she is assigned has its quota reduced by one seat.

 Point again and repeat the process…

 TTC allows students to “trade” priorities.
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TTC for Schools in Pictures
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Why TTC for Schools?

Theorem. The outcome of TTC is efficient and 

TTC is group strategy-proof.

 Proof is just like the housing problem

 Strategy-proofness is the same.

 Efficiency is just like proof of core outcomes.
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The Random Assignment Problem



The random assignment 

problem
 Problem components

- objects  (e.g., houses, offices, tasks)

- agents   (e.g., tenants, staff, workers)

- preferences  (e.g. ROL’s)

 Problem solutions

- (deterministic/random) assignment mechanisms



N= {1, 2, 3, 4},     H= {a, b, c, d}      

R1            R2 R3         R4

a a          b        b

b b a c

c d c        d

d c d a

Example:

Not very fair!

1/

6

1/

3 

1/

2

1/

2

1/

2

1/

2

1/

3 

1/

3 
1/2

1/

6

1/

6

Random assignment has 

more promise for fairness!



What is a mechanism?
Assignme

nts

Mechanism
(R)

Deterministic

Mechanism

Random

Mechanism

Deterministic

Assignments

Random

Assignments



 Model 

 Random Priority (RP)

 An equivalence (Abdulkadiroglu & Sonmez, 1998)

 A mechanism from recent theory: Probabilistic Serial (PS)

 Discussion: What’s the matter with RP and TTC?

 Two new mechanisms

 Top trading cycles from equal division

 Random Priority [*k]

 An equivalence theorem



The Model

 Agents     N={1, 2,…, n}

 Objects (Houses)    H={h1, h2,…, hn}  

 A list of strict preferences R=(Ri)i€N

 An assignment is a bijection µ:N→H

 A random assignment is a bistochastic matrix P=[pix ]i€N,x€H where

pix := Prob{ agent i gets object x}

Fact: A random assignment can be expressed as a lottery over 
deterministic assignments and vice versa.

 A mechanism is a function φ s.t. φ(R) is the associated random 
assignment for the problem R



Random Priority

RP Algorithm

1. Draw a random ordering of agents from the uniform distribution.

2. Compute the associated serial dictatorship

Formally, RP(R)=1/n! ∑f SDf ( R )

i.e., average of n! serial dictatorships



An interesting equivalence

Theorem: Random serial dictatorship is equivalent to the following 
mechanism:

Core from Random Endowments

1. Randomly assign each object to a different agent

2. Compute the associated core outcome 

(via the Top Trading Cycles procedure)



 Ex post-efficiency: A random assignment is ex-post efficient iff all 

lotteries that induce it have support over Pareto efficient 

assignments.

 Ordinal efficiency: A random assignment is ordinally efficient iff it 

is not stochastically dominated by another random assignment.

A random matching P ordinally dominates Q iff for all i and s:

Prob {student i is assigned to s or a better school under P} ≥ 

Prob {student i is assigned to s or a better school under Q};

holding strictly for some student j.

Welfare notions:



Surprise: Random Priority is not fully efficient 

!!!   (Bogomolnaia & Moulin, 2001)

Example:  Suppose R1= R2 :  a b c d

R3= R4 :  b a d c

a b c d

1 5/12 1/12 5/12 1/12

2 5/12 1/12 5/12 1/12

3 1/12 5/12 1/12 5/12

4 1/12 5/12 1/12 5/12

a b c d

1 1/2 0 1/2 0

2 1/2 0 1/2 0

3 0 1/2 0 1/2

4 0 1/2 0 1/2

RP 

Assignment

Alternative 

Assignment



The Challenger: Probabilistic Serial 

(Bogomolnaia & Moulin, JET 2001)

PS Algorithm

Think of each object as an infinitely divisible good. If an agent eats a pix of 
object x during the procedure, then PS allocates him  object x with 
probability pix..

Step 1: Each agent eats away from his favorite object at the same speed.   
Stop when an object is completely exhausted.

In general,

Step k, k≥2: Consider the remaining objects with the remaining units of 
them. Each agent eats away from his favorite object at the same 
speed. Stop when an object is completely exhausted.

Theorem (Bogomonaia & Moulin): PS finds the central point of the 
ordinally efficient set.


