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Fair division problem (informal)

I a set of n agents
I a set of resources to be allocated
I agents have preferences over resources
I the final allocation is subject to some feasibility constraints

... a final allocation is found somehow

Without additional parameters being fixed it is difficult to give a more
precise definition.



Fair division problem (informal)

I a set of n agents
I a set of resources to be allocated
I agents have preferences over resources
I the final allocation is subject to some feasibility constraints

... a final allocation is found somehow

Without additional parameters being fixed it is difficult to give a more
precise definition.



1. Centralized versus decentralized

I Finding the allocation requires the agents to express, in one way or
another, their preferences.

I The process that consists in querying the agents about their
preferences is called preference elicitation.

Centralized mechanism There is a central authority that elicits the agents’
preferences, and then determines the output allocation.

Decentralized / distributed mechanism There is no central authority, and
the agents themselves compute the allocation, revealing
their preferences by certain specific (inter)actions.

Partially decentralized mechanism interaction protocol + central authority



2. Divisible versus indivisible resources

Divisible resources (homogeneous or heterogeneous)
Indivisible resources or items



3. Ordinal versus cardinal preferences

(for centralized and semi-centralized mechanisms)
Cardinal preferences Agents specify numerical values with (sets of)

resources
Ordinal preferences Agents are only required to rank (sets of) resources



4. One-to-one versus many-to-one

(for indivisible resources)
One-to-one allocation

Each agent gets exactly one item: matching problem
Many-to-one allocation

Each agent gets possibly several items.



5. Deterministic versus randomized

Deterministic allocation Output = single allocation (possibly using some
tie-breaking mechanism)

Randomized allocation Output = probability distribution over
allocations.



6. Money or not

Money Agents may pay and/or receive money
No money



7. Initial endowments or not

Initial endowments The agents initially own resources (other than money)
No initial endowments



Fair division

1. centralized or decentralized
2. divisible or indivisible
3. ordinal or cardinal
4. one-to-one or many-to-one
5. deterministic or randomized
6. money or no money
7. initial endowments or no initial endowments



Fair division

1. centralized or decentralized
2. divisible or indivisible
3. ordinal or cardinal
4. one-to-one or many-to-one
5. deterministic or randomized
6. money or no money
7. initial endowments or no initial endowments
8. goods only / goods and bads
9. nonshareable goods / partially shareable goods

10. (...)
for (almost) all the rest of the lecture



Centralized fair division

(From now on: indivisible goods)

Given
I a set of m items to be allocated,
I a set of n agents,
I preferences of agents over items,
I the final allocation being subject to some feasibility constraints,
I criteria for evaluating the quality of allocations

the central authority determines an allocation of items to agents



Decentralized fair division

Given
I a set of m items to be allocated
I a set of n agents
I the final allocation being subject to some feasibility constraints
I criteria for evaluating the quality of allocations,

an interaction protocol between the agents is performed, resulting in an
allocation.



Semi-decentralized fair division

Given
I a set of m items to be allocated
I a set of n agents
I the final allocation being subject to some feasibility constraints
I criteria for evaluating the quality of allocations,

an interaction protocol between the agents and the central authority is
performed, resulting in an allocation.
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Computation and communication

Computation What are the computational resources (time and space)
needed to determine the outcome of the mechanism? How
should this outcome be computed in practice?

I an algorithm A computes a mechanism F if for any
instance I, running A on I outputs F (I).

I (very informally) cost of an algorithm: worst case
number of resources, over all instances, used by the
algorithm.

I computational complexity of mechanism: cost of the
cheapest algorithm that computes it.



Computation and communication

İ
Communication What is the length of the interaction between the agents

(and possibly the central authority) needed to determine
the outcome of the mechanism? How should this
interaction be performed?

I a communication protocol P is similar to an algorithm,
but the basic elements are communication acts instead
of instructions for the computer.

I P is a protocol for a mechanism F if for any instance
I, executing P on I outputs F (I).

I cost of a protocol: worst case number of bits, over all
instances, exchanged between the agents between
themselves and/or with the central authority.

I communication complexity of mechanism: cost of its
cheapest protocol.



Communication: centralized mechanisms

A centralized protocol works as follows:
1. each agent reports her preferences Pi (ordinal or cardinal), in some

format
2. the central authority computes F (P1, . . . ,Pn)

I communication complexity of F = number of bits needed to specify
P1, . . . ,Pn

I D space of all admissible preferences (preference relations or utility
functions)

I each agent needs to send at most log |D| bits
I communication complexity: O(n log |D|)
I this upper bound is not always reached
I find some mechanisms needing less communication



Preferential dependencies

Existence of preferential dependencies between variables:

I I’d like to have two consecutive time slots for my lectures (but not
three)

I if I don’t get the shared custody of the children then at least I’d like
to keep the cat

I I want Ann or Charles or Daphne in my team, each of whom would be
an excellent goal keeper

I if I receive a left shoe then my value for a right shoe is higher than in
the opposite case.



Fair division

1. centralized or decentralized
2. divisible or indivisible
3. ordinal or cardinal
4. one-to-one or many-to-one
5. deterministic or randomized
6. money or no money
7. initial endowments or no initial endowments
8. goods only / goods and bads
9. nonshareable goods / partially shareable goods

10. separable preferences or not



Separable preferences

I � preference relation over 2O is additively separable if there are m
values v(o1), . . . , v(om) such that for all A,B ⊆ O,

A � B if and only if
∑
o∈A

v(o) ≥
∑
o∈B

v(o)

I � is separable if for each A,B,C ⊆ O with A ∩ C = B ∩ C = ∅,

A ∪ C � B ∪ C if and only if A � B

I � is weakly separable if for each a, b,C ⊆ O with a /∈ C , b /∈ C ,

{a} ∪ C � {b} ∪ C if and only if {a} � {b}

I additively separability ⇒ separability ⇒ � weak separability



Separable preferences

I abc � ab � ac � bc � c � a � b � ∅

I not weakly separable
I abcd � abc � abd � acd � bcd � ab � ac � bc � bd � ad � a �

cd � b � c � d � ∅
I weakly separable
I not separable

I . . . � ad � bd � ae � af � be � cd � ce � bf � cf � . . .
I (can be completed so as to be) separable
I not additively separable

(1) af � cd ⇒ v(a) + v(f ) > v(c) + v(d)
(2) ce � bf ⇒ v(c) + v(e) > v(b) + v(f )
(3) bd � ae ⇒ v(b) + v(d) > v(a) + v(e)
(2) + (3) v(c) + v(d) > v(a) + v(f )
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Preferences over bundles

I N set of agents
I O = {o1, . . . , om} indivisible items

Notation: [o1o2|o3|o4o5] is the allocation where that agent 1 receives
{o1o2}, 2 receives {o3}, 3 receives {o4, o5}.

“No externality” assumption:

an agent’s preferences bear only on the bundle she receives

I 1 is indifferent between [o1o2|o3|o4o5] and [o1o2|o3o5|o4]
I 2 is indifferent between [o1o2|o3|o4o5] and [∅|o3|o1o2o4o5]
I etc.

Therefore: it is sufficient to know each agent’s preferences over bundles
(as opposed to her preferences over all allocations).



Preferences

Ordinal preferences
� weak order on X
x � y x is at least as good as y
x � y ⇔ x � y and not y � x (strict preference)
x ∼ y ⇔ x � y and y � x (indifference)

Cardinal preferences
u : X → R

Dichotomous preferences
A ⊆ X set of acceptable bundles



Monotonicity

I O = {o1, . . . , om} indivisible items
I 2O set of all bundles of items
I X ⊆ 2O set of admissible bundles that an agent may receive

Typically, preferences over bundles are monotonic: receiving one more item
never makes an agent less happy. (In particular: no bads, no chores).

I ordinal preferences: if S ⊇ S ′ then S � S ′

I cardinal preferences: if S ⊇ S ′ then u(S) ≥ u(S ′)
Strict monotonicity:

I ordinal preferences: if S ⊃ S ′ then S � S ′

I cardinal preferences: if S ⊃ S ′ then u(S) > u(S ′)



Combinatorial spaces. . .

I O = {o1, . . . , om} indivisible items
I 2O set of all bundles of items
I X ⊆ 2O set of admissible bundles that an agent may receive

Each agent has to express her preferences over X :
I Sometimes, this is not a problem (for instance: one-to-one allocation)
I However, generally X has a heavy combinatorial structure



Combinatorial spaces. . .

The combinatorial trap. . .
Two items. . .
o1o2 � o2 � o1 � ∅ → 4 subsets to compare



Combinatorial spaces. . .

The combinatorial trap. . .
Four items. . .
o1o2o3o4 � o1o2o4 � o1o3o4 � o2o3o4 � o1o2o3 � o1o3 � o2o4 � o3o4 �
o1o4 � o1 � o2 � o4 � o3 � ∅ → 16 subsets



Combinatorial spaces. . .

The combinatorial trap. . .
Twenty items. . .
o8o5 � o5o3o9 � o8 � ∅ � o5 � o8o5o3o9 � o8o3 � o5o9 � o3o9 �
o8o9 � o8o3o9 � o5o3 � o9 � o3 � o8o5o9 � o8o5o3o1o2o5o8o9 �
o1o5o6 � o7 � o2o3o4o5o6o7o8 � o1o2o3o4o5 � o1o3 � o2 �
o1o3o7o9 � o1o5 � o1o7o8o9 � o2 � o4 � o6 � o1o7 � o1o2o3 �
o1o2 � o2o5o4 � o1 � o2 � o1o2o5o4 � o1o5 � o2o4 � o5o4 �
o1o4 � o1o5o4 � o2o5 � o4 � o5 � o1o2o4 � o1o2o5 � o1o5 �
o5o3o9 � o1 � ∅ � o5 � o1o5o3o9 � o1o3 � o5o9 � o3o9 � o1o9 �
o1o3o9 � o5o3 � o9 � o3 � o1o5o9 � o1o5o3o9o6o5o1o9 � o9o5o6 �
o7 � o6o3o4o5o6o7o1 � o9o6o3o4o5 � o9o3 � o6 � o9o3o7o9 �
o9o5 � o9o7o1o9 � o6 � o4 � o6 � o9o7 � o9o6o3 � o9o6 �
o6o5o4 � o9 � o6 � o9o6o5o4 � o9o5 � o6o4 � o5o4 � o9o4 �
→ 1048575 subsets → the expression takes more than 12 days.



The dilemma

I The expression of preferential dependencies is often necessary.
I but. . . Eliciting and representing � or u in extenso is unfeasible in

practice.
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Centralized mechanisms: cardinal, additive preferences

I each agent i specifies a value ui(oj) for each oj ∈ O.
I for each S ⊆ O, Ui(S) =

∑
o∈S ui(o).

Two possible approaches:
1. fix an optimization criterion and output the optimal allocation
2. fix a set of properties that we want the allocation to satisfy, and

check if there is one.
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Centralized, additive preferences: maximizing social welfare
I utilitarian social welfare:

U(π) =
n∑

i=1
Ui(π(i))

I egalitarian social welfare:

U(π) = max
i=1,...,n

Ui(π(i))

I egalitarian social welfare, leximin refinement:
I if U = (U1, . . . ,Un) then U↑ = (U↑1 , . . . ,U

↑
n ) = (Uσ(1), . . . ,Uσ(n))

where σ is a permutation of {1, . . . , n} such that Uσ(1) ≤ . . . ≤ Uσ(n).
I (U1, . . . ,Un) leximin-dominates (V1, . . . ,Vn) if there exists a k such

that U↑k > V ↑k and for each j < k, U↑j = V ↑j .
I Nash social welfare:

U(π) =
n∏

i=1
Ui(π(i))



Brief incursion into computational complexity

I search problem: given a relation F between instances and solutions:
given instance I, output a solution s such that F (I, s), if such a
solution exists.

I decision problem: given a set of instances I and a subset I+ of
positive instances: given instance I, is it true that I ∈ I+?

I a decision or search problem is in class P (deterministic polynomial
time) if it can be solved by an algorithm running in an amount of
time bounded by a polynomial function of the size of the instance.

I (informally) a decision problem is in NP (nondeterministic polynomial
time) if given a solution of the problem, this solution can be verified
in deterministic polynomial time.

I (informally) a decision or search problem is NP-hard if it is “at least
as difficult” as all problems in NP.

I a decision problem is NP-complete if it is (a) in NP and (b) NP-hard.
I is is strongly believed that P is strictly contained in NP.



Centralized, additive preferences, utilitarian social welfare

I simply allocate each item to the agent who values it best

oj ∈ π(i) if oj = argmax
o∈O

ui(o)

I little to do with fairness, even if values are normalized
I obviously in P (but becomes NP-hard if preferences are not additively

separable)



Centralized, additive, egalitarian: the Santa Claus problem

I centralized mechanism; cardinal, additive preferences;
I egalitarian social welfare

U(π) = max
i=1,...,n

Ui(π(i))

I return an allocation maximizing egalitarian social welfare.



The Santa Claus problem: computational complexity

1. Bad news: computing an optimal egalitarian allocation is NP-hard,
even in the simple case of two agents with identical preferences.

2. Good news: the problem is pseudo-polynomial for a fixed number of
agents.

3. (Rather) good news: polynomial approximation algorithms.
4. Good news: translation into integer linear programming.



The Santa Claus problem: NP-hardness

Bad news: NP-hardness, even for two agents with identical valuations.

I subset sum: given a collection of integers S = (s1, . . . , sp) and an
integer K , is there a subset S ′ of S such that

∑
i∈S′ si = K?

I (S = (3, 3, 5),K ): positive instance of subset sum for
K = 3, 5, 6, 8, 11

I partition subproblem of subset sum where
∑m

i=1 si = 2K .
I partition, and a fortiori subset sum, are known to be

NP-complete
I reducing partition to optimal egalitarian allocation:

I p items, two agents with identical preferences:
ui(o1) = s1, . . . , ui(op) = sp;

I S is a positive instance of partition if the optimal allocation has
egalitarian social welfare equal to K .
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The Santa Claus problem: pseudo-polynomiality

Good news: pseudo-polynomiality for a fixed number of agents

I let W = maxi,j ui(oj)
I there exists an algorithm that finds an optimal allocation in time

O(W .2npol(n,m))
I does this mean that the problem is in P if the number of agents is a

constant?

No, because the size needed to represent W is logW .
I O(W .2npol(n,m)) is polynomial in the size of the input if both W

and n are (bounded by a) constant.
I informally: if the valuations are small, and the number of agents is

small too, then computing an optimal egalitarian allocation is easy.

We will now find such an algorithm
1. first in the simple case n = 2 and identical valuations.
2. then n = 2, any valuations
3. then in the general case: n constant > 2.
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The Santa Claus problem: pseudo-polynomiality
1. n = 2 and identical valuations
I Input α1 = u1(o1) = u2(o1), . . . , αm = u1(om) = u2(om)
I K =

⌈(∑m
i=1 αi

)
/2
⌉

I we construct a table T (w , i) for each w = 0, . . . ,K and i = 1, . . . ,m
I T (w , i) contains a subset of {α1, . . . , αi} of sum w if such a subset

exists; otherwise, T (w , i) = nil .
T (α1, 1)← {o1}; T (0, 1)← ∅; for w /∈ {0, α1}: T (w , 1)← nil .
for i = 2, . . . ,m

for w = 0, . . . ,K
if T (w , i − 1) 6= nil
then T (w , i)← T (w , i − 1)
else if T (w − αi , i − 1) 6= nil

then T (w , i)← T (w , i − 1) ∪ {oi}
else T (w , i)← nil endif

end for
end for
w∗ ← max{w ,T (w ,m) 6= nil};
return the allocation [T (w∗,m) | T (w∗,m)]



The Santa Claus problem: pseudo-polynomiality

2. n = 2 and any valuations

I Input: for each i = 1, . . . ,m: αi = u1(oi), βi = u2(oi)
I K =

⌈(∑m
i=1 max(αi , βi)

)
/2
⌉

I construct partial allocation π(v ,w , i) for each (v ,w) ∈ {0, . . . ,K}2

and each i ≤ m
I π(v ,w , i) contains a partial allocation of {o1, . . . , oi} giving utility v

to agent 1 and w to agent 2 if there is one; π(v ,w , i) = nil otherwise



The Santa Claus problem: pseudo-polynomiality
2. n = 2 and any valuations

π(0, 0, 1)← [∅|∅];
for each (v ,w) 6= (0, 0): π(w ,w , 1)← nil end for
for i = 1, . . . ,m

for (v ,w) ∈ {0, . . . ,K} × {0, . . . ,K}
if π(v − αi ,w , i − 1) 6= nil
then π(v ,w , i)← π(v ,w , i − 1) + (oi |∅);
else if π(v ,w − βi , i − 1) 6= nil

then π(v ,w , i)← π(v ,w , i − 1) + (∅|oi);
else π(w , i)← nil endif

end for
end for
let (v∗,w∗) s.t. min(v∗,w∗) is maximal and π(v∗,w∗,m) 6= nil ;
return π(v∗,w∗,m)



The Santa Claus problem: pseudo-polynomiality

3. general case: n constant + any valuations

I Input: for each i = 1, . . . , n, j = 1, . . . ,m: uji = u1(oj).
I K =

⌈(∑m
j=1 max(uj1, . . . , ujn)

)
/n
⌉

I construct π(v ,w , i) for all (v1, . . . , vn) ∈ {0, . . . ,K}n and all i ≤ m
I π(v ,w , i) contains a partial allocation of {o1, . . . , oi} giving utility vi

to agent i if there is one; π(v ,w , i) = nil otherwise
I time needed to fill the table O(m.K n)
I remains polynomial in the size of the input if K and n are constant
I works more generally for any notion of social welfare defined by a

polynomially computable aggregation function ?



The Santa Claus problem: pseudo-polynomiality

3. general case: n constant + any valuations

I let W = maxi,j ui(oj)
I there exists an algorithm that finds an optimal allocation in time

O(W .2npol(n,m))
I the size needed to represent W is logW , therefore O(W .2npol(n,m))

is polynomial in the size of the input if W and n are constant.
I informally: if the valuations are small, and the number of agents is

small too, computing an optimal egalitarian allocation is easy.



The Santa Claus problem: polynomial approximation
Good news, 2: polynomial approximation

I first for n = 2 and identical valuations α1, . . . , αm

I Input α1 = u(o1), . . . , αm = u(om)
I for each S ⊆ {1, . . . , n}: V (S) =

∑
j∈S αj .

I Problem P(k): find S s.t. V (S) is maximal but no larger than k.
I a greedy approximation algorithm for P(k):

S ← ∅
for i = 1 to n

if αi + V (S) ≤ K
then S ← S ∪ {j}
endif

end for
return S

I let S∗ be the optimal subset
I show that V (S) ≥ 1

2V (S∗)
I show that the 1

2 bound is asympotically reached.



The Santa Claus problem: polynomial approximation

I n = 2 and identical valuations α1, . . . , αm

I S∗ optimal subset: V (S∗) maximal subject to V (S∗) ≤ k
I π∗ = [S∗ | S∗] optimal egalitarian solution
I π = [S | S] returned by the algorithm
I mini=1,2 ui(π(i)) ≤ 1

2 mini=1,2 ui(π∗(i))
I the algorithm is a polynomial 2-approximation algorithm.
I can we get a better polynomial approximation? yes



The Santa Claus problem: polynomial approximation

I n = 2 and identical valuations α1, . . . , αm

I problem P: optimize egalitarian social welfare
I exact algorithm: at each step i , construct the list of all reachable

sums from {α1, . . . , αi}: exponential time
I greedy algorithm: at each step, store exactly one number: linear time,

approximation guarantee = 2
I inbetween: at each step, keep a list of reachable sums of “reasonable

cardinality”
I given parameter δ, trim the current list of possible sums L into L′ by

removing elements as long as for every y ∈ L there exists z ∈ L′ such
that (1− δ)y ≤ z ≤ y .



The Santa Claus problem: polynomial approximation
We want a polynomial r -approximation algorithm for each r > 1.

I input: without loss of generality, α1 ≥ α2 ≥ . . . ≥ αm

δ = r−1
m

L0 = {0}
for j = 1 to m do
Li ← MergeLists(Li , Li−1 + αi)
Li ← Trim(Li , δ)
remove from L all elements bigger than K
return the partition corrresponding to the largest element from Lm

I the algorithm gives a r -approximation of the initial problem
I complexity: O(m2 log(K )/1− r): polynomial in the size of the input

data and in 1
1−r

I A is a fully polynomial-time approximation scheme for problem P.



The Santa Claus problem: polynomial approximation

I 2 agents with identical valuations: fully polynomial-time
approximation scheme

I it does not carry on to the general case:
I approximated to a factor m − n + 1
I cannot be approximated to a factor < 2, unless P = NP

(Bezakova and Deni, 2005)



The Santa Claus problem: translation into ILP

Good news, 3: translation into zero-one linear programming

I Input: n agents, m items, valuations uji = ui(oj)
I Goal: find an allocation maximizing mini

∑
j∈π(i) vi(oj)

I introduce nm variables x ji (agent i gets item oj)
I solve the following problem:

max(t)

s.t.

∑m
j=1 x

j
i u

j
1 ≥ t ∀i = 1, . . . , n∑n

i=1 x
j
i = 1 ∀j = 1, . . . ,m

x ji ∈ {0, 1} ∀i , j
I zero-one linear programming is NP-hard but there exist now very

good off-the-shelf solvers.



Centralized, additive preferences, leximin
I compute w1 = maxπ mini ui(π(i))
I for k = 1, . . . , n, solve Pk :

max(t)

s.t.

∑n
j=1 x

j
k = w1∑m

j=1 x
j
1u

j
1 ≥ t ∀i 6= k

(...)

I w2 : maximal value obtained for P1, . . . ,Pn.
I for (k, k ′) = 1, . . . , n, k 6= k ′, solve Pk,k′ :

max(t)

s.t.

∑n
j=1 x

j
k = w1∑n

j=1 x
j
k′ = w2∑m

j=1 x
j
1u

j
1 ≥ t ∀i 6= k, k ′

(...)

I w3 : maximal value obtained for all Pk,k′ .
I for all (k, k ′, k ′′), solve Pk,k′,k′′ :
I etc.



Centralized, additive preferences, leximin

I exponential number of 0-1 linear programs
I but polynomial number of n is a constant
I other algorithms (Bouveret and Lemaître, 2009)



Centralized, additive preferences, Nash

I maximize U(π) =
∏n

i=1 Ui(π(i))
I NP-hard
I pseudo-polynomial for constant number of agents
I constant factor approximation 2e1/e ≈ 2.9 (Cole & Gkatzelis, 2017)
I solvable by a convex integer program



Centralized mechanisms: cardinal, additive preferences

Two possible approaches:
1. fix an optimization criterion and output the optimal allocation
2. fix a set of properties that we want the allocation to satisfy, and

check if there is one.



Centralized, additive preferences, envy-freeness

I π is envy-free if for all i , j , ui(π(i)) ≥ ui(π(j))
I envy-freeness has to be coupled with an efficiency criterion, in

particular:
I completeness: all items must be allocated
I Pareto-efficiency: no allocation π′ is at least as good as π for all

agents and strictly better for at least one agent.



Centralized, additive preferences, envy-freeness
I envy-freeness + completeness∑m

k=1 xki uki ≥
∑m

k=1 xkj uki ∀i , j = 1, . . . , n∑n
i=1 x

j
1 = 1 ∀j = 1, . . . ,m

x ji ∈ {0, 1} ∀i , j∑m
k=1(xki − xkj )uki ≥ 0 ∀i , j = 1, . . . , n∑n
i=1 x

j
1 = 1 ∀j = 1, . . . ,m

x ji ∈ {0, 1} ∀i , j

I existence of a complete EF allocation is NP-complete
I degree of envy of an allocation

e(π) = max
i,j

max(0, ui(π(j))− ui(π(i))

I (Lipton, Markakis, Mossel, Saberi, 2004):
I Let α = maxi,o ui(o). There always exists an allocation π such that

e(π) ≤ α, and such an allocation can be found in time O(mn3).
I If the utilities are identical: [fully] polynomial-time approximation

scheme [for n constant]



Centralized, additive preferences, envy-freeness

I envy-freeness + Pareto-efficiency

I verifying that an allocation is complete and envy-free: O(n2m)
I therefore: existence of an envy-freene + complete allocation is in NP
I does this extend to the existence of an envy-free and Pareto-efficient

allocation?
I checking whether an allocation is envy-free: polynomial.
I checking whether an allocation is Pareto-efficient:



Centralized, additive preferences, envy-freeness

I envy-freeness + Pareto-efficiency

I verifying that an allocation is complete and envy-free: O(n2m)
I therefore: existence of an envy-freene + complete allocation is in NP
I does this extend to the existence of an envy-free and Pareto-efficient

allocation?
I checking whether an allocation is envy-free: polynomial.
I checking whether an allocation is Pareto-efficient: coNP-complete. A

problem I, I+ is in coNP if its complement problem I, I− is in NP.



Centralized, additive preferences, envy-freeness

I envy-freeness + Pareto-efficiency

I verifying that an allocation is complete and envy-free: O(n2m)
I therefore: existence of an envy-freene + complete allocation is in NP
I does this extend to the existence of an envy-free and Pareto-efficient

allocation?
I checking whether an allocation is envy-free: polynomial.
I checking whether an allocation is Pareto-efficient: coNP-complete.
I existence of an envy-free and Pareto-efficient allocation: in Σp

2
I Σp

2 = NPNP set of problems solvable by a nondeterministic polynomial
algorithm equipped with NP-oracles.

I strongly believed that NP 6= coNP and that both are strictly
contained in Σp

2 .
I de Keijzer, Bouveret, Klos and Zhang, 2009: Σp

2-complete.



Centralized, additive preferences, maxmin fair share

Given a fair division problem:
I for each agent i , the maximin fair share value of i is her value of the

worst share of the best possible partition

MmFS(i) =: max
π

min
j

ui(π(j))

I π satisfies the maxmin fair share property if for all i ,

ui(π(i)) ≥ MmFS(i)

I weaker than envy-freeness
I under additive preferences, a maxmin fair share allocation always

exists (a) for n = 2, and (b) for any n and identical preferences.
I in the general case, it is difficult to find a problem with no maxmin

fair share allocation (Bouveret and Lemaitre 2014) but
counterexamples exist (Procaccia and Wang 2014).



Centralized, additive preferences, maxmin fair share

I given i ’s preferences and the number of agents n, computing
MmFS(i) is NP-hard, even with n = 2(reduction from partition).

I given problem P and allocation π, what is the complexity of
determining whether π satisfies the maxmin fair share property?.



Centralized, additive preferences, maxmin fair share

I given i ’s preferences and the number of agents n, computing
MmFS(i) is NP-hard, even with n = 2(reduction from partition).

I given problem P and allocation π, what is the complexity of
determining whether π satisfies the maxmin fair share property?.

I in NP:
for each i = 1, . . . , n

guess πi

check that ui(π(i) ≥ ui(πi(j)) for each j = 1, . . . ,m
end for

I NP-hard: reduction from partition.
I NP-complete.



Centralized, additive preferences, maxmin fair share

I given i ’s preferences and the number of agents n, computing
MmFS(i) is NP-hard, even with n = 2(reduction from partition).

I given problem P and allocation π, what is the complexity of
determining whether π satisfies the maxmin fair share property?
NP-complete.

I given problem P, compute a maxmin fair share allocation: NP-hard,
even for two agents with identical preferences.

I given problem P, determine if there exists a maxmin fair share
allocation:

I in NP:
guess n + 1 allocations π, π1, . . . , πn

check that ui(π(i) ≥ ui(πi(j)) for each j = 1, . . . ,m
I NP-hard?



Centralized, additive preferences, proportional and minmax
fair share

Given a fair division problem:
I the proportional fair share value of i is PFS(i) = 1

n
∑m

j=1 u
j
i

I π satisfies the proportional fair share property if for all i ,
ui(π(i)) ≥ PFS(i)

I the minmax fair share value of i is her value of the best share of the
worst possible partition:

mMFS(i) = min
π

max
j

ui(π(j))

I π satisfies the minmax fair share property if for all i ,
ui(π(i)) ≥ mMFS(i)

I envy-freeness ⇒ minmax FS ⇒ proportional FS ⇒ FS
I complexity of verification, search and existence for proportional and

minmax FS?



Outline

Fair division: taxonomy of problems

Computation and communication
Communication
Combinatorial spaces and compact representation

Centralized mechanisms
Cardinal, additive preferences
Cardinal, non-additive preferences
Ordinal, separable preferences
Ordinal, nonseparable preferences

Decentralized mechanisms



Combinatorial spaces: the dilemma

n attributes, each with d possible values ⇒ dn alternatives
[In fair division: alternatives are bundles of objects]

Way 1 Assume preferential independence
I elicitation and optimization are made easier (e.g. using

decomposable utilities)
I but weak expressivity (impossibility to express

preferential dependencies).
Way 2 Allow the user to express any possible preference over the

alternatives
I full expressivity
I but representing and eliciting � or u in extenso is

unfeasible in practice.

⇓

Half-way: languages for compact preference representation
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preferential dependencies).
Way 2 Allow the user to express any possible preference over the
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unfeasible in practice.

⇓

Half-way: languages for compact preference representation



Centralized mechanisms: dichotomous preferences

I 2O set of all bundles of items
I each agent partitions the set of all bundles between good and bad

bundles: O = O+ ∪ O−

I for each S ∈ Good , u(S) = 1
I for each S ∈ Bad , u(S) = 0

I O = {b(eer), c(offee), s(ugar)}
I Emmanuel wants a beer, or else coffee with sugar.

Two possible meanings:
1. GoodE = {{b}, {c, s}}: nonmonotonic
2. GoodE = {{b, c}, {b, s}, {b, c}, {b, s}, {b, c, s}}: monotonic

I Marine wants a beer.
I Jean-Luc wants a beer or a coffee.

How can we express such preferences in a succinct way?



Incursion to propositional logic

Let PS be a set of propositional symbols. The propositional language
generated from PS is the set of formulas LPS defined as follows:

I every propositional symbol is a formula;
I > and ⊥ are formulas;
I if ϕ is a formula then ¬ϕ is a formula;
I if ϕ and ψ are formulas then ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, and ϕ↔ ψ are

formula;
> (true) and ⊥ (false): logical constants
¬ (not): unary connective
∧ (and), ∨ (or), → (implies), ↔ (equivalent) : binary connectives.



Incursion to propositional logic

An interpretation (or valuation) is a mapping from PS to {0, 1}. An
interpretation I is extended to formulas by the following rules:

I I(>) = 1;
I I(⊥) = 0;
I I(¬ϕ) = 1− I(ϕ);
I I(ϕ ∨ ψ) = max(I(ϕ), I(ψ));
I I(ϕ ∧ ψ) = min(I(ϕ), I(ψ));
I I(ϕ→ ψ) = I(¬ϕ ∨ ψ);
I I(ϕ↔ ψ) = I((ϕ→ ψ) ∧ (ψ → ϕ)).

I is a model of ϕ, denoted I � ϕ, iff I(ϕ) = 1

Mod(ϕ) = {I | I � ϕ}



Incursion to propositional logic

Validity ϕ is valid if I(ϕ) = 1 for every interpretation I
� ϕ

Satisfiability ϕ is satisfiable if I(ϕ) = 1 for at least one interpretation I
Logical consequence

ψ is a logical consequence of ϕ if every model of ϕ is a
model of ψ
ϕ � ψ

Logical equivalence
ϕ and ψ are equivalent if they are logical consequences of
each other
ϕ ≡ ψ



Incursion to propositional logic

Some classes of formulas:
I literals: atomic formulas or negations of atomic formulas

a ¬b . . .
I clauses: disjunctions of literals, including ⊥

a ∨ ¬b ∨ c d ∨ ¬d ⊥ . . .
I k-clauses: disjunctions of at most k literals

I cubes: conjunctions of literals, including the empty cube >
a ∧ ¬b ∧ c d ∧ ¬d > . . .

I k-clauses: conjunctions of at most k literals
I positive formulas: formulas in which the only connectives appearing

are ∧ and ∨
a ∧ (b ∨ c) a ∨ (b ∧ c) . . .



Binary variables

Particular case: binary variables → Di = {>,⊥} for all i .
Can be used to represent subsets of elements.

A set of elements O = {o1, . . . , om} → binary variables {o1, . . . , om},
where each variable Oi stands for the presence or absence of oi .

→ each instantiation / interpretation represents a subset π of O

Example of application: allocation of indivisible items

Example: o1ō2ō3o4ō5 represents the subset {o1, o4}.



Binary variables

Particular case: binary variables → Di = {>,⊥} for all i .
Can be used to represent subsets of elements.

A set of elements O = {o1, . . . , om} → binary variables {o1, . . . , om},
where each variable Oi stands for the presence or absence of oi .

→ each instantiation / interpretation represents a subset π of O

Example of application: allocation of indivisible items

Example: o1ō2ō3o4ō5 represents the subset {o1, o4}.



Of logic and goals

Logic-based languages suit well when we have to deal with binary variables
(e.g. resource allocation problems).

I A propositional syntax LO. . .
I set of propositional symbols O,
I usual connectives



Of logic and goals

Logic-based languages suit well when we have to deal with binary variables
(e.g. resource allocation problems).

I A propositional syntax LO. . .
I set of propositional symbols O,
I usual connectives

Example
I O = { , , , , , , }.
I Set of requests for one agent:

I ∧
(

( ∧ ) ∨
)
,

I ∧ .



Dichotomous preferences

What to do with all these goals ?

A first (simplistic) example: dichotomous preferences.

Example
Variables O = {o1, o2, o3}

o2 ∧ (o1 ∨ o3)

represents the dichotomous preference relation

{o1, o2, o3} ∼ {o1, o2} ∼ {o2, o3} � all others subsets



Dichotomous preferences

What to do with all these goals ?

A first (simplistic) example: dichotomous preferences.

Example
Variables O = {o1, o2, o3}

o2 ∧ (o1 ∨ o3)

represents the dichotomous preference relation

{o1, o2, o3} ∼ {o1, o2} ∼ {o2, o3} � all others subsets



Dichotomous preferences

I three items: one cup of coffee, one glass of beer, one sugar cube
I three agents: E(mmanuel), M(arine), J(ean-Luc), with dichotomous

preferences:
I Emmanuel wants a beer, or else coffee with sugar.
I Marine wants a beer.
I Jean-Luc wants a beer or a coffee.

I can they all be satisfied?
I bJ ∨ cJ where bJ means: the beer is allocated to Jean-Luc
I bE ∨ (cE ∧ sE )
I bM
I constraints: bE → ¬bM ∧ ¬bJ ; etc. (an item is given to at most one

agent)
I (and possibly): bE ∨ bM ∨ bJ etc. (every item must be allocated)

I allocations satisfying a maximum number of agents: model-preserving
translation to maxsat

[c| − |b] [c|b|−] + s to anybody (or to nobody, if allowed)
[−|cs|b] [b|cs|−]



Dichotomous preferences

Dichotomous preferences for fair division
I X = {o1, . . . , om} set of items
I A ⊆ X set of acceptable bundles
I agent i partitions the set of bundles A into two sets: acceptable and

unacceptable bundles
I bE ∨ (cE ∧ sE ): Emmanuel is happy with {b}, {c, s}, {b, s}, {b, c}

and {b, c, s}, and unhappy with {c}, {s} and ∅
I each set of acceptable bundles A is representable by a propositional

formula ϕE

I a set of acceptable bundles A is monotonic if for all X ⊆ Y , X ∈ A
implies Y ∈ A

I Remark A is monotonic iff ϕE is a positive formula (can be written
with only ∧, ∨, but with no ¬)

I b ∧ ¬c (agent allergic to the smell of coffee): nonmonotonic



Dichotomous preferences

I Emmanuel wants a beer, or else coffee with sugar: bE ∨ (cE ∧ sE )
I Marine wants a beer: bM
I Jean-Luc wants a beer or a coffee: bJ ∨ cJ

An allocation π is envy-free if every agent is at least happy with her share
than with any other agent’s share

I π1 = [b| − |c]: Marine is envious of Emmanuel.
I π2 = [cs|b|−]: Jean-Luc is envious of both Emmanuel and Marine.
I π3 = [−| − |c]: envy-free, but not Pareto-efficient:

[b| − |c] does at least as well as π3 for all agents and strictly better
for one (Emmanuel).

Here: no allocation is both envy-free and Pareto-efficient



Dichotomous preferences

Preferences slightly change: Emmanuel does not like beer anymore.
I Emmanuel wants a coffee with sugar: cE ∧ sE
I Marine wants a beer: bM
I Jean-Luc wants a beer or a coffee: bJ ∨ cJ

I [−|b|c] and [s|b|c]: envy-free and Pareto-efficient



Dichotomous preferences
I Emmanuel wants a coffee with sugar: cE ∧ sE
I Marine wants a beer: bM
I Jean-Luc wants a beer or a coffee: bJ ∨ cJ
I EF :

(bJ ∨ cJ) ∨ (¬(bE ∨ cE ) ∧ ¬(bM ∨ cM)) Jean-Luc not envious
∧ (cE ∧ sE ) ∨ (¬(cM ∧ sM) ∧ ¬(cJ ∧ sJ)) Emmanuel not envious
∧ bM ∨ (¬bE ∧ ¬bJ) Marine not envious

I Γ: an item should not be given to more than one person

cE → (¬cM ∧ ¬cJ) ∧ . . .

I Pareto-efficiency: satisfy a maximal subset of

∆ = {bJ ∨ cJ , cE ∧ sE , bM}

I EF-PE allocation ↔ maximal subset of ∆ consistent with EF ∧ Γ
I model-preserving translation into default logic.
I practical computation: use efficient off-the shelf Answer Set

Programming solvers



Dichotomous preferences

I existence of an efficient, envy-free allocation is
ΣP

2 -complete.
I complexity can fall down if

I the number of agents is fixed to a small number, especially 2.
I the agents are assumed to have identical preferences.
I the agents’ goals are restricted to a specific subclass of formulas.
I Pareto-efficiency is replaced by the weaker completeness condition
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I complexity can fall down if

I the number of agents is fixed to a small number, especially 2.
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I Pareto-efficiency is replaced by the weaker completeness condition



Dichotomous preferences

Retsircting the agents’ goal to a specific subclass of formulas.
I if agents’ preferences are represented by cubes then existence of

an efficient, envy-free allocation is NP-complete.
I if agents’ preferences are represented by clauses then existence of

an efficient, envy-free allocation under this restriction is in
P.



Compact representation languages

I O = {o1, . . . , om} set of objects
I X = 2O

Representation language : 〈L, IL〉, where
I L language
I IL : Φ ∈ L 7→ preference relation �Φ or utility function uΦ induced by

Φ



Compact representation languages

Example 1: a language for dichotomous preferences:
I Lprop: set of all propositional formulas built from the propositional

symbols {o1, . . . , on}
I ϕ ∈ L 7→ uΦ defined by u(S) = 1 if S � ϕ, = 0 otherwise.



Compact representation languages

Example 1: a language for dichotomous preferences:
I Lprop: set of all propositional formulas built from the propositional

symbols {o1, . . . , on}
I ϕ ∈ L 7→ uΦ defined by u(S) = 1 if S � ϕ, = 0 otherwise.

Example
I O = { , , , , , , }.
I Goal: ∧

(
( ∧ ) ∨

)



Compact representation languages

I O = {o1, . . . , om} set of objects
I X = 2O

Representation language : 〈L, IL〉, where
I L language
I IL : Φ ∈ L 7→ preference relation �Φ or utility function uΦ induced by

Φ
Example 2: (obvious) language for additive utility functions:

I Ladd : set of all collections of real numbers

W = {ui , 1 ≤ i ≤ m}

for all S ⊆ O, uW (S) =
∑

i,oi∈S ui



Compact representation languages

I O = {o1, . . . , om} set of objects
I X = 2O

Representation language : 〈L, IL〉, where
I L language
I IL : Φ ∈ L 7→ preference relation �Φ or utility function uΦ induced by

Φ
Example 3: “explicit” representations

I for utility functions: Lexp = set of all collections of pairs

{〈S, u(S)〉|S ∈ X}

I for preference relations: L′exp = list

S1 � S2 � S3 � . . .

representing a ranking over X .



Compact representation languages

On which criteria can we evaluate the different languages?
I Expressive power: what is the set of all preference structures

expressible in the language?

I Succinctness: (informally) language L1 is at least as succinct as
language L2 is any preference structure expressible in L2 can be
expressed in L1 without any exponential growth of size.

I Computational complexity: how hard is it to compare two alternatives
or to find an optimal alternative when the preferences are represented
in L?

I Easiness of elicitation
Preference elicitation = interaction with a user, so as to acquire her
preferences, encoded in a language L.
Is it easy to construct protocols for eliciting the agent’s preferences in
L?
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Compact representation languages: expressive power

Representation language: 〈L, IL〉

Expressive power of a language = set of all preference structures that can
be expressed in the language =IL(L).

〈L, IL〉 at least as expressive as 〈L′, IL′〉 iff IL(L) ⊇ IL′ (L′).

Examples :
I expressive power of Ladd : all additive utility functions over X ;
I expressive power of Lexp: all utility functions over X .

Lexp is more expressive than Ladd .



Compact representation languages: succinctness
Relative notion:

L1 is at least as succinct as L2 if there exists F : L2 → L1 and a
polynomial function p such that for all Φ ∈ L2:

I IL2(Φ) = IL1(F (Φ)): Φ and F (Φ) induce the same preferences
I |F (Φ)| ≤ p(|Φ|): the translation is succinct

Example:
I Lexp,add = explicit representation restricted to additive utility

functions = set of all collections of pairs

U = {〈x , u(x)〉|x ∈ X}

such that u is additively decomposable

I Ladd is strictly more succinct than Lexp,add ;
I but Lexp and Ladd are incomparable because Lexp is more expressive

than Ladd .



Compact representation languages: computational
complexity

What is the computational complexity of the following problems when the
preferences on X are represented in the language L:

Given an input Φ in the language L, ...
I dominance: and x , y ∈ X , do we have x �Φ y?
I optimisation: find the preferred alternative (or one of the preferred

alternatives)
(trivial for monotonic preferences)

I constrained optimisation: and a subset C , possibly defined
succinctly, find the preferred option (or one of the preferred options)
x ∈ C .

Measuring hardness uses computational complexity notions.



k-additive utilities

I A utility function over X = 2O is k-additive if it can be expressed as
the sum of sub-utilities over subsets of objects of cardinality ≤ k.

I Φ: u : {S ⊆ O, |S| ≤ k} → R

u(x) =
∑

S⊆O,|S|≤k

u(S)

Example: O = {a, b, c, d}, k = 2

u(a, b, d) = u(ab) + u(ad) + u(bd) + u(a) + u(b) + u(d)



k-additive utilities

I u is 1-additive ⇔ u is additive
I every utility function is m-additive (m = |O|)
I a k-additive function can be also expressed as the sum of sub-utilities

over subsets of attributes of cardinality exactly k.

u(x) =
∑

S⊆O,|S|=k

v(S)

I can be specified by values v(S) for all |S| = k:
(

m
k

)
values

I polynomially large if k is a constant, otherwise exponentially large



k-additive utilities

An example
I O consists of 10 pairs of shoes
I u(S) = 10p + s if S contains a total of p matching pairs and in

addition s single shoes
I u is 2-additive:

I u({lefti}) = u({righti}) = 1 for all i
I u({lefti , righti}) = 8 for all i

I Exercise: express u as the sum of local values of sets of exactly two
shoes.



k-additive utilities

Another example

Categorized domain: three attributes N = {main, dessert,wine}, and

X = {Meat,Fish,Veggie} × {Apple,Cake} × {Red ,White}

umain udessert uwine umain,wine umain,dessert udessert,wine

m 8
f 10
v 12

a 1
c 5

r 1
w 0

r w
m 5 −1
f −1 5
v 0 0

a c
m 2 0
f 0 0
v 0 3

a c
r 0 0
w 0 0

u(vrc) = uM(v) + uD(c) + uW (r) + uMW (vr) + uMD(vc) + uWD(rc)
= 12 + 5 + 0 + 0 + 3 + 0 = 18

I Exercise: find the optimal alternative



k-additive form: complexity

For any k ≥ 2:

given a k-additive representation...
I and an alternative x , computing u(x) is in P
I and a number α, checking that there exists an alternative x such that

u(x) ≥ α is NP-complete
I finding x with u(x) maximal is NP-hard (except of course if we know

beforehand that preference are monotonic...)



Generalized Additive Independence

GAI-decomposability
Let X1, . . . ,Xk be a family of subsets of N such that

⋃
i Xi = N.

u is GAI-decomposable with respect to X1, . . . ,Xk if there exist k
subutility functions

ui : Xi → R

such that

u(x) =
k∑

i=1
ui(xXi )

I k-additivity = GAI-decomposability, with |Xi | ≤ k for all i .



Generalized Additive Independence

N = {first,main, dessert,wine}

X = {Soup,Pasta}×{Meat,Fish,Veggie}×{Apple,Cake}×{Red ,White}

X1, . . . ,Xk = {{first}, {main,wine}, {main, dessert}}

ufirst umain,wine umain,dessert

s 3
p 1

r w
m 13 7
f 9 15
v 12 12

a c
m 2 0
f 0 0
v 0 3

I Dominance is in P
I Optimisation is NP-hard in the general case



Weighted logics

Language LW :
I G = a set of pairs 〈ϕi ,wi〉 where

I ϕi is a propositional formula;
I wi is a real number

I IL(G) = uG defined by: for all x ∈ 2PS ,

uG(x) =
⊕
{wi | 〈ϕi ,wi〉 ∈ G and x � ϕ}

I ⊕ non-decreasing, symmetric function
I two usual choices: ⊕ = + and ⊕ = max.
I rest of the talk: ⊕ = +



Weighted logics

Example
I O = { , , , , , , }.
I Agent 1’s requests:

I

〈
∧
(

( ∧ ) ∨
)
, 110

〉
,

I

〈
,−10

〉
,

I

〈
∧ , 50

〉
.

Computation of individual utility (⊕ = +) :

π1 = { , , , }



Weighted logics
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Weighted logics

Example
I O = { , , , , , , }.
I Agent 1’s requests:

I

〈
∧
(

( ∧ ) ∨
)
, 110

〉
,

I

〈
,−10

〉
,

I

〈
∧ , 50

〉
.

Computation of individual utility (⊕ = +) :

π1 = { , , , } ⇒ u1(π1) = 110 −10



Weighted logics

Example
I O = { , , , , , , }.
I Agent 1’s requests:

I

〈
∧
(

( ∧ ) ∨
)
, 110

〉
,

I

〈
,−10

〉
,

I

〈
∧ , 50

〉
.

Computation of individual utility (⊕ = +) :

π1 = { , , , } ⇒ u1(π1) = 110− 10+
∧
0



Weighted logics

Example
I O = { , , , , , , }.
I Agent 1’s requests:

I

〈
∧
(

( ∧ ) ∨
)
, 110

〉
,

I

〈
,−10

〉
,

I

〈
∧ , 50

〉
.

Computation of individual utility (⊕ = +) :

π1 = { , , , } ⇒ u1(π1) = 110− 10 + 0 = 100



Weighted logics: expressive power

Depends on the formulas and the weights allowed in the pairs 〈ϕ,w〉.
I positive cubes + all weights: fully expressive
I literals + all weights: additive functions
I 2-cubes + all weights: 2-additive functions
I cubes + positive weights: non-negative functions
I clauses + positive weights: a proper subset of all nonnegative

functions
Hint u({o1, o2}) = 1, u({o1}) = u({o2}) = 0: not

expressible!
I positive formulas + positive weights: monotonic non-negative

functions
I positive cubes + positive weights: a proper subset of all monotonic

non-negative functions



Weighted logics: succinctness

I all formulas + all weights: fully expressive
I positive cubes + all weights: fully expressive

But

all formulas + all weights
more succinct than

positive cubes + all weights

Hint: try to express u defined by

u(x) = max
i=1,...,n

xi



Weighted logics: computational complexity

I comparing two alternatives: can be solved in polynomial time
I finding an optimal alternative: NP-complete in the general case, even

for dichotomous utilities
I finding an optimal alternative: polynomial for some restrictions of the

language
I monotonic fragment (no negation, positive weights)
I additive fragment (literals only)



Outline

Fair division: taxonomy of problems

Computation and communication
Communication
Combinatorial spaces and compact representation

Centralized mechanisms
Cardinal, additive preferences
Cardinal, non-additive preferences
Ordinal, separable preferences
Ordinal, nonseparable preferences

Decentralized mechanisms



Centralized mechanisms, ordinal preferences

I each agent i has a private preference relation �i over 2O .
I the usual communication dilemma:

1. either i specifies �i in extenso: exponential communication cost.
2. or domain restriction, the most common being separability.



Centralized mechanisms: ordinal, separable preferences

I each agent i reports a preference relation Bi over O
I Bi is extended to 2O :
I �i is the monotonic and separable extension of B to 2O , that is, the

smallest preference relation � over 2O such that
I � extends B: for all oi , oj ∈ O, oi B oj implies {oi} � {oj}
I � is separable
I � is monotonic

I � sometimes called the responsive extension of B.



Monotonic separable extension

m = 2, o1 B o2

∅

o2

o1

o1o2



Monotonic separable extension

m = 3, o1 B o2 B o3

∅

o3

o2

o1 o2o3

o1o3

o1o2

o1o2o3



Monotonic separable extension
m = 4, o1 B o2 B o3 B o4

o1o2o3o4

o1o2o3

o1o2o4

o1o2 o1o3o4

o1o3 o2o3o4

o2o4

o2o3o1o4

o3o4

o1

o2

o3

o4

∅



Centralized mechanisms: ordinal, separable preferences

Pros:
I communication complexity: O(m. logm).

Cons:
I assumes separability: what will an agent report if she prefers o2 over

o3 when she has o1 and o3 over o2 if not?

o1o2o3 � o1o2 � o2o3 � o1 � o3 � o2 � ∅

o1 B o3 B o2 or o1 B o2 B o3 ?
I produces a (very) partial order



Modal notions of efficiency and fairness

I P = 〈B1, . . . ,Bn〉 where each Bi is a ranking over O.
I P∗ = 〈�1, . . . ,�n〉 where each �i is the monotonic separable

extension of Bi .
I completion of P∗:

T = 〈T1, . . . ,Tn〉

where each Ti is a linear order extending �i .
I For a fairness or efficiency concept Γ:

Possible Γ an allocation π is possibly Γ if there exists a
completion T of P∗ such that π satisfies Γ under T .

Necessary Γ an allocation π is necessarily Γ if for every completion
T of P∗, π satisfies Γ under T .



Modal notions of efficiency and fairness

I P = (B1, . . . ,Bn)
7→ R = (�1, . . . ,�n) collection of partial orders on 2O

I π possibly envy-free
if it is envy-free for some complete extension of R

I π necessarily envy-free
if it is envy-free for all complete extensions of R

I possible Pareto efficiency, necessary Pareto efficiency, etc: defined
similarly.



Ranking single items

Simple characterization:
I π is necessarily envy-free if for all agents i , j , and all k ≤ |πi |, i

prefers his kth best item in πi to the kth best item in πj
I π is possibly envy-free if for all i , j , either |πi | > |πj | or for some

k ≤ |πi |, i prefers his kth best item in πi to the kth best item in πj .

B1: a B b B c B d B e B f
B2: a B d B b B c B e B f
B3: b B a B c B d B f B e
B4: b B a B c B e B f B d

possibly efficient, possibly envy-free
not necessarily envy-free
not necessarily efficient



Ranking single items
Simple characterization:

I π is necessarily envy-free if for all agents i , j , and all k ≤ |πi |, i
prefers his kth best item in πi to the kth best item in πj

I π is possibly envy-free if for all i , j , either |πi | > |πj | or for some
k ≤ |πi |, i prefers his kth best item in πi to the kth best item in πj .

B1: a B b B c B d B e
B2: a B d B b B c B e
B3: b B a B c B d B e
B4: b B a B c B e B d

I is there a complete, possibly envy-free (PEF) allocation?
I if some agent receives nothing, she necessarily envies all those

receiving something
I PEF ⇒ agent receives two items, three agents receive one item
I if 1 or 2 receive only one item, one of them will not get a and will

necessarily envy someone; similarly for 3 and 4.
I if k distinct items are top-ranked by some agent, there exists a

complete possibly envy-free allocation if and only if m ≥ 2n − k.
[Remains true if complete is replaced by possibly Pareto-efficient.]



Ranking single items

Simple characterization:
I π is necessarily envy-free if for all agents i , j , and all k ≤ |πi |, i

prefers his kth best item in πi to the kth best item in πj
I π is possibly envy-free if for all i , j , either |πi | > |πj | or for some

k ≤ |πi |, i prefers his kth best item in πi to the kth best item in πj .

1 and 4 leave:

B2: a B d B b B c B e B f
B3: b B a B c B d B f B e

necessarily envy-free
not necessarily efficient



Modal notions of efficiency and fairness

The following problems are NP-complete:
I existence of a complete necessarily envy-free allocation.
I existence of a possibly Pareto-optimal, necessarily envy-free allocation.
I existence of a necessarily Pareto-optimal, necessarily envy-free

allocation.
Particular case of two agents (n = 2):

I a complete allocation π is necessarily envy-free if and only if
I m is even
I for i = 1, 2 and every k = 1, . . . , m2 , π gives agent i at least k of her

2k − 1 most preferred items.
I a complete allocation necessarily envy-free, if there exists ine, can be

computed in polynomial time.



Outline

Fair division: taxonomy of problems

Computation and communication
Communication
Combinatorial spaces and compact representation

Centralized mechanisms
Cardinal, additive preferences
Cardinal, non-additive preferences
Ordinal, separable preferences
Ordinal, nonseparable preferences

Decentralized mechanisms



Centralized mechanisms: ordinal, nonseparable preferences

I How can we express succinctly ordinal, nonseparable preferences over
2O

I a first possibility: conditionally lexicographic preferences
I a second possibility: conditional importance networks



Conditional importance networks

I allow to express conditional importance statements such as

ab : cde . fg

if I have a and I do not have b
then I prefer to have {c, d , e} rather than {f , g}

all other things being equal



Conditional importance networks

Conditional importance statement
S+,S− : S1 . S2 (with S+, S−, S1 and S2 pairwise-disjoint).
� is compatible with S+,S− : S1 . S2 if for every A,B ⊆ O such that

I A ⊇ S+ and B ⊇ S+

I A ∩ S− = ∅ and B ∩ S− = ∅
I A ⊇ S1 and B 6⊇ S1

I B ⊇ S2 and A 6⊇ S2

I for each o ∈ O \ (S+ ∪ S− ∪ S1 ∪ S2), we have o ∈ A iff o ∈ B
then A � B

Example: ad : b . ce implies for example ab � ace, abfg � acefg , . . .

CI-net
A CI-net on V is a set N of conditional importance statements on V.



Conditional importance networks

Conditional importance statement
S+,S− : S1 . S2 (with S+, S−, S1 and S2 pairwise-disjoint).

CI-net
A CI-net on V is a set N of conditional importance statements on V.

Preference relation induced from a CI-net
�N is the smallest preference relation over 2O such that

I �N is compatible with every conditional importance statement in N
I �N is monotonic



Conditional importance networks

A CI-net of 4 items {a, b, c, d}: {a : d . bc, ad : b . c, d : c . b}

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Induced preference relation �N : the smallest preference monotonic relation compatible with
all CI-statements.



Conditional importance networks

A CI-net of 4 items {a, b, c, d}: {a : d . bc, ad : b . c, d : c . b}

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Induced preference relation �N : the smallest preference monotonic relation compatible with
all CI-statements.



Conditional importance networks

I we recover the separable, monotonic extension when the CI-net is of
the form

∅,∅ : o1 . o2
∅,∅ : o2 . o3;
. . .
∅,∅ : om−1 . om

I CI-nets can express all strict monotonic preference relations on 2O .
I dominance and satisfiability: PSPACE-complete (existence of

exponentially long irreducible dominance sequences)
I in P for precondition-free, singleton-comparing CI-statements (such as
{a . c, b . c, e . d}).
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Computation and communication
Communication
Combinatorial spaces and compact representation

Centralized mechanisms
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Cardinal, non-additive preferences
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Decentralized mechanisms

1. the Descending Demand Protocols
2. Picking Sequences Protocols
3. the Undercut Protocol
4. Local Exchange Protocols



The Descending Demand Protocols

I Herreiner and Puppe (2002)
I Basic protocol:

I at each step k, each agents gives her best k subset of items
I stop when we reach a k such that there exists an allocation π such

that π(i) is among the top k subsets of agent i .
I 2 agents (Ann and Bob), 4 items (a, b, c, d)

step Ann Bob
1 abcd abcd
2 bcd abc
3 acd abd
4 cd bcd
5 abc acd
6 abd bd
7 bc ac
8 bd bc

I stop and output (bd |ac)



The Descending Demand Protocols

I allows for nonseparable preferences
I resulting allocation maximizes egalitarian social welfare
I resulting allocation may not be envy-free, even when there exists one
I in (bd |ac): Bob envies Ann.
I modified DDP:

step Ann Bob
1 abcd abcd
2 bcd abc
3 acd abd
4 cd bcd
5 abc acd
6 abd bd
7 bc ac
8 bd bc
9 ab ab



The Descending Demand Protocols

Many nice properties but exponential communication complexity
I with two agents, in the worst case, each agent may have to report

half of her preferences
I this worst case is likely to be typical, especially if agents have similar

preferences.



Picking Sequences Protocols

I strict alternation protocol:
I agent 1 takes an item
I agent 2 takes one of the remaining items
I . . .
I agent n takes one of the remaining items
I agent 1 takes one of the remaining items
I etc.

I example for 2 agents and 8 items: 12121212
I other sequences may be fairer, for instance 12212112
I what about 3 agents and 17 items?
I to each sequence σ: a picking sequence protocol Pσ.



Picking Sequences Protocols

I difficult for the (even nonstrategic) agents to pick the next item if
they have nonseparable preferences

I picking sequences 1221
I agent 1: o1o2 � o3o4 � o1o3 � o2o3 � o2o4 � o1o4
I agent 2: o1o2 � o1o3 � o1o4 � o2o3 � o2o4 � o3o4
I what should she pick first?
I the resulting allocation could be (o1o4|o2o3), Pareto-dominated.

I when all agents have separable preferences:
I the resulting allocation is Pareto-efficient
I no guarantee of maxmin fairness or envy-freeness (even when there

exists an envy-free efficient allocation)
I communication complexity at most m logm
I more on picking sequences on Thursday.



The Undercut Protocol

I Brams, Kilgour and Klamler (2012)
I Two agents (Ann and Bob), 6 items.
I Ann: e � a � b � f � c � d
I Bob: f � e � a � b � c � d
I first phase:

I agents name their best items
I if they name different items, each gets the item she names
I otherwise the item goes into the contested pile CP
I Ann names and gets e, Bob names and gets f .
I Ann and Bob both name a, which goes to the contested pile CP.
I Similarly, b, c and d go to the contested pile: CP = {a, b, c, d}



The Undercut Protocol

I Ann: e � a � b � f � c � d
I Bob: f � e � a � b � c � d
I first phase: Ann gets e, Bob gets f , CP = {a, b, c, d}.
I second phase:

I let >i be the monotonic separable extension of �i
I S is a minimal bundle for agent i if

(a) S �i CP \ S, and
(b) for every T <i S, CP \ T �i T .

I each agent i communicates to the central authority, privately, her set
of minimal bundles

I Ann:
I Ann’s preference relation on 2CP :

abcd � abc � abd � acd � bcd � ab � ac � bc � ad � bd � cd . . .

I Ann’s only minimal bundle: bc
I bc � ad
I bd ≺ ac, cd ≺ ab, b ≺ acd , c ≺ abd , d ≺ abc



The Undercut Protocol

I Ann: e � a � b � f � c � d
I Bob: f � e � a � b � c � d
I first phase: Ann gets e, Bob gets f , CP = {a, b, c, d}.
I second phase:

I let >i be the monotonic separable extension of �i
I S is a minimal bundle for agent i if

(a) S �i CP \ S, and
(b) for every T <i S, CP \ T �i T .

I each agent i communicates to the central authority, privately, her set
of minimal bundles

I Bob:
I Bob’s preference relation on 2CP :

abcd � abc � abd � ab � acd � ac � bcd � ad � a � bc � bd . . .

I Bob’s minimal bundles: bcd , ad



The Undercut Protocol
I Ann: e � a � b � f � c � d
I Bob: f � e � a � b � c � d
I Ann gets e, Bob gets f , CP = {a, b, c, d}.
I Ann’s minimal bundles: MBA = {bc}
I Bob’s minimal bundles: MBB = {bcd , ad}
I Case 1: MBA 6= MBB .

I The central authority proposes (for instance) Bob’s most preferred
minimal bundles S in MBB \MBA to Ann.

I It proposes bcd , to Ann.
I Ann can choose to take CP \ S, or to undercut S by taking her most

preferred bundle among those that are >A-dominated by S
I Ann’s preference relation on 2CP :

abcd � abc � abd � acd � bcd � ab � ac � bc � ad � bd � cd . . .

I Ann can undercut bcd into bc
I since Ann prefers bc to a, Ann takes bc and Bob receives ad
I final allocation [bce|adf ].



The Undercut Protocol

I Ann: e � a � b � f � c � d
I Bob: f � e � a � b � c � d
I Ann gets e, Bob gets f , CP = {a, b, c, d}.
I Ann’s minimal bundles: MBA = {bc}
I Bob’s minimal bundles: MBB = {bcd , ad}
I Case 1: MBA 6= MBB .
I Case 2a: MBA = MBB , and there exists S ∈ MBA such that

S ∼1 CP \ S (and equivalently, S ∼2 CP \ S).
I Ann receives S and Bob receives CP \ S (or vice versa)



The Undercut Protocol

I Ann: e � a � b � f � c � d
I Bob: f � e � a � b � c � d
I Ann gets e, Bob gets f , CP = {a, b, c, d}.
I Ann’s minimal bundles: MBA = {bc}
I Bob’s minimal bundles: MBB = {bcd , ad}
I Case 1: MBA 6= MBB .
I Case 2a: MBA = MBB , and there exists S ∈ MBA such that

S ∼1 CP \ S.
I Case 2b: MBA = MBB , and no such S exists.

I a minimal bundle S is chosen arbitrarily and Ann has to choose
between accepting CP \ S and undercutting S.

I in cases 1 and 2a, the resulting allocation is envy-free, provided the
agent’s preferences are separable.



The Undercut Protocol

I communication complexity is exponential
I but this is a worst-case bound, and in practice it will often be very

small.



Protocols Based on Local Exchanges

I works with a prior allocation (initial endowment or default allocation
or randomly selected allocation)

I the agents may contract local exchanges, respecting some rationality
criteria

I possibility (or not) of side payments
I depending on several parameters (number of agents and items

involved in an exchange, possibility of side payments, possible
restrictions on preferences), the process may or may not converge
towards a fair allocation, for some given fairness criteria.

I for instance: (Chevaleyre, Endriss, Estivie, Maudet, 2007): if utility
functions are supermodular, then a Paretp-efficient envy-free
allocation can always be reached.
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