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The cake is the interval [0, 1]

Interested parties (players) N = {1,..., n} 

Each player i has a private (non-atomic) value density function vi. Valuation 
of a piece: integral of the value density

Can be seen as the limit of a model of indivisible goods when number of 
goods goes to infinity.

Goal : Find allocation A = (A
1
, ..., A

n
), i.e. assignment of (disjoint) pieces to 

players, where a piece is a union of intervals

Cake Cutting: metaphor for fair division
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Proportional: Each player i gets their minimum fair share: Vi(Ai) ≥ 1/n

Envy-Free:  Nobody prefers anyone else's piece to its own: Vi(Ai) ≥ Vi(Aj)

 Equitable:  All the players are equally happy with their piece : Vi(Ai) = Vk(Ak)

 Perfect:  Each player values every piece at exactly 1/n : Vi(Ak) = 1/n

                          The allocation is proportional and envy-free
Cut-and-Choose : Alice cuts the cake in two pieces of equal value to 

her. Bob chooses his favorite piece, and Alice takes the remainder.

Fairness
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Private valuations : center interacts with the players; needs to extract enough 
information to output a fair allocation. The standard (RW) query model :

    CUT
i 
(v) :  Player i cuts at point x where Vi(0,x) = v; x becomes a cut point

    EVAL
i 
(x) : Player i returns value v so that Vi(0, x) = v, where x is a cut point

● Ask Alice CUTA
(0.5) : Alice cuts the cake in half 

● Ask Bob EVALB
(x) : Bob evaluates the left piece demarcated by Alice

α

Query Model

Example :
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                          The allocation is proportional and envy-free

Query Complexity

The center can ask the players to discretize the cake in many cells, each worth 

at most ε/n2, then assemble an ε-fair allocation offline 

→ high communication + high fragmentation. 

The problem of fair division is much more interesting when spatial structure 
matters – e.g. aim for connected pieces (or minimize number of cuts).

 Proportional, envy-free, and equitable allocations with connected pieces 

exist for all n; perfect allocations exist with n(n-1) cuts.

 Via some fixed point theorem (Sperner, Borsuk-Ulam)



Query Complexity: Summary



Perfect Allocations: Austin's procedure
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Perfect Allocations: Austin's procedure
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Perfect Allocations: Austin's procedure
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Perfect Allocations: n=2 players

Theorem: Computing an ε-perfect allocation for n=2 players with two cuts in 
the (RW) query model takes Θ(log(1/ε)) queries.

(Proof) Upper bound: binary search on the position of the first knife. 

V
2
([x,f(x)]) < 1/2

V
1
([x,f(x)]) = 1/2

x f(x)

V
2
([y,f(y)]) > 1/2

V
1
([y,f(y)]) = 1/2

y f(y)



Perfect Allocations: n=2 players

(Proof) Lower bound: Maintain throughout execution 2 intervals I and J:

● the protocol has not made any cuts inside I and J, 

● any allocation obtained with cuts outside I and J is far from perfect, and

● the distance to a perfect allocation cannot decrease much with any Cut 
query 



Perfect Allocations: n=2 players

(Proof) Lower bound (cont).  

If a Cut query falls outside [x,x+a] or [y,y+a], answer consistent with history. 

Else, say player 1 gets Cut
1
(α):

● Case 1: α ∈ [c, c + d/2].  Let m = x + a/2, n = x + 51a/100, p = y+a/2, q = y + 
51a/100.



Perfect Allocations: n=2 players

(Proof) Lower bound (cont).  

Starting configuration:

● 3 more cases: α ∈ [c+d/2,c+d], [0.5+c-d, 0.5+c+d/2], [0.5+c+d/2,0.5+c+2d]



Connected Equitable Allocations: n=2 players

Theorem: Computing a connected ε-equitable allocation for n=2 players 
takes Θ(log(1/ε)) queries.

(Proof) Upper bound: Cechlarova and Pillarova 2012.

Lower bound: Maintain throughout execution an interval I such that 

● the protocol has not made any cut inside I 

● the distance to an equitable allocation by cutting outside I is high, and

● the interval I cannot be diminished by much with any single Cut query

* 0 < a < b < 0.5



Connected Equitable Allocations: n=2 players

(Proof) Lower bound (cont): 

Starting configuration: a = 0.05 and b = 0.06 



Connected Envy-free Allocations: n=3 players

Theorem: Computing a connected ε-envy-free allocation for n=3 players takes 
Θ(log(1/ε)) queries.

(Proof) Upper bound: We simulate a moving knife procedure due to Barbanel 
and Brams in the RW model.
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Connected Envy-free Allocations: n=3 players

(Proof) Lower bound: Use valuations drawn from class of “generalized rigid 
measure systems”:

● the density of each measure is bounded: 1/√2 < v
i
(x) < √2, for each player i

● there exist points x, y ∈ [0, 1], such that for each player i there exist 0 < s
i
 < 

1/3 < t
i
 < 1/2 and the matrix of valuations satisfies the constraints in the table:

*Stromquist first introduced a variant of rigid measure systems to show an 
impossibility for RW protocols. 



Connected Envy-free Allocations: n=3 players

(Proof) Lower bound (cont): Maintain throughout execution two intervals I, J:

● there are no cut points inside I and J, and any allocation that does not use 
cuts in I and J has high envy

● the intervals I, J cannot be diminished much with a single Cut query

Starting configuration:



Moving Knife Protocols

Moving Knife Step: devices 1 ... K (“knives” and “triggers”) move along the 
cake as time proceeds from α to ω. The value of each device j, x

j
, is a function 

of time, of the values of devices 1…j-1, and of the valuations of the players for 
pieces demarcated by knives at that time.
 

● value of knife: its position

● value of trigger: arbitrary.

A moving knife step ends when a trigger “fires”, i.e. when x
j
(t) = 0 for some j, t. 

Outcome of a step: 

● index of a trigger j with x
j
(α) * x

j
(ω) ≤ 0

● a time t where x
j
(t) = 0 

● values of all other devices at this time.



Moving Knife Protocols

Moving Knife Protocol: has finite number of steps, each of which is either an
RW query or a moving knife step.

Example: Austin's procedure can be cast a single moving knife step, with 3 
Devices:

● Knife 1: position x
1
 = time

● Knife 2: position x
2
 depends on time and valuation of player 1

● Trigger: value x
3
 = V

1
(knife

1
, knife

2
) – 0.5

Theorem (informal): Fair Moving Knife protocols with a constant number of 
steps can be simulated approximately with O(log(1/ε)) queries.



Moving Knife Protocols

Main open question: super-logarithmic query complexity lower bound for  
computing connected ε-envy-free allocations for n ≥ 4 players or perfect 
allocations for n ≥ 3 players.

● This would imply no moving knife protocol can exist.



Beyond infinite precision models: A few words on 
communication complexity

We need bounded density: v
i
(x) < D, for some constant D.

This is the correct interpretation of no-atoms in the communication model

For simplicity n is arbitrary but fixed.

Communication complexity: Each player knows its own input v
i
. An F-fair 

protocol is a tree that on every input v = (v
1
, …, v

n
) reaches a leaf marked 

with an allocation that is F-fair for v. 



Beyond infinite precision models: A few words on 
communication complexity

The deterministic communication complexity of F, D(F) : 

● the number of bits sent on the worst case input by the best 

communication protocol that computes F-fair allocations. 

The randomized communication complexity of F, R
ε
(F) : 

● the worst case number of bits sent by the best randomized protocol 

that computes F-fair allocations with probability 1 – ε.

(error probability taken over the random choices of the protocol on the 
worst case input).



Communication complexity

3 classes:

“Easy” problems: Admit bounded protocols in the RW model.

Theorem (upper bound): The following problems have communication 
protocols with a constant number of rounds of communication O(log(1/ε)) 
per round:

● For any fixed n, a connected ε-proportional allocation among n players.

● For any fixed n, for some constant C that depends on n, an ε-envy-free 
allocation with at most C cuts, for n players.

Theorem (lower bound): Every (deterministic or randomized) protocol for 
computing a (not necessarily connected) ε-proportional allocation among 
n ≥ 2 players requires Ω(log(1/ε)) bits of communication.



Communication complexity

“Medium” problems: Admit moving knife protocols:

Theorem (upper bound): The deterministic communication complexity of 
the following problems is O(log2 ε-1):  

● ε-perfect allocation with 2-cuts between n = 2 players,
 

● a connected ε-equitable allocation between n = 2 players, 
 

● a connected ε-envy-free allocation among n = 3 players.

The randomized communication complexity of these problems is 
O(log ε-1 log log ε-1).



Communication complexity

“Medium” problems: Admit moving knife protocols:

Theorem (lower bound): Any (deterministic or randomized) protocol for 
finding 

● an ε-perfect allocation with 2-cuts between n = 2 players 

● a connected ε-equitable allocation between n = 2 players 

using rounds of communication of polylog(ε-1)-bits each requires 
Ω(log ε-1 / log log ε-1) rounds of communication.



Communication complexity

Medium problems are intuitively equivalent to the Crossing Problem:

Alice gets sequence of numbers x
0
, x

1
, …, x

m
 with 0 ≤ x

i
 ≤ m and Bob 

gets y
0
, y

1
, …, y

m
 with 0 ≤ x

i
 ≤ m, where x

0
  ≤ y

0
 and x

m
 ≥ y

m
. 

Goal: find an index i such that either both x
i-1

  ≤ y
i-1

 and x
i
 ≥ y

i
 or that 

both x
i-1

 ≥ y
i-1

 and x
i
 ≤ y

i
.

Bounds on the communication complexity of the crossing problem 
+  reductions between the fair division problems and crossing.



“Hard” problems: No moving knife protocols known. 

Natural candidates:

● connected ε-envy-free allocation for n ≥ 4 players

● perfect for n ≥ 3 players

Main open question: Separate the “hard” from “medium” → Show super-
polylogarithmic lower bounds on the communication complexity of these 
problems.

Communication complexity



THANK YOU
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