

The Query and Communication Complexity of Cake Cutting

Simina Brânzei and Noam Nisan Hebrew University of Jerusalem

August 9, 2017 Higher School of Economics, St Petersburg

Cake Cutting: metaphor for fair division

The cake is the interval [0, 1]

Interested parties (players) N = {1,..., n}

Each player i has a private (non-atomic) value density function v_i . Valuation of a piece: integral of the value density

Can be seen as the limit of a model of indivisible goods when number of goods goes to infinity.

Goal : Find allocation $A = (A_1, ..., A_n)$, i.e. assignment of (disjoint) pieces to players, where a piece is a union of intervals

Fairness

Proportional: Each player i gets their minimum fair share: $V_i(A_i) \ge 1/n$ **Envy-Free:** Nobody prefers anyone else's piece to its own: $V_i(A_i) \ge V_i(A_j)$ **Equitable:** All the players are equally happy with their piece : $V_i(A_i) = V_k(A_k)$ **Perfect:** Each player values every piece at exactly $1/n : V_i(A_k) = 1/n$

<u>Cut-and-Choose</u> : Alice cuts the cake in two pieces of equal value to her. Bob chooses his favorite piece, and Alice takes the remainder.

Query Model

Private valuations : center interacts with the players; needs to extract enough information to output a fair allocation. The standard (RW) query model :

CUT_i(v) : Player i cuts at point x where $V_i(0,x) = v$; x becomes a cut point **EVAL**_i(x) : Player i returns value v so that $V_i(0, x) = v$, where x is a cut point

Alice

Х

Example :

• Ask Bob $EVAL_{B}(x)$: Bob evaluates the left piece demarcated by Alice

Query Complexity

The center can ask the players to discretize the cake in many cells, each worth at most ϵ/n^2 , then assemble an ϵ -fair allocation offline

 \rightarrow high communication + high fragmentation.

The problem of fair division is much more interesting when spatial structure matters – e.g. aim for connected pieces (or minimize number of cuts).

Proportional, envy-free, and equitable allocations with connected pieces exist for all n; perfect allocations exist with n(n-1) cuts.

Via some fixed point theorem (Sperner, Borsuk-Ulam)

Query Complexity: Summary

Fairness notion	Number of players	Upper bound	Lower bound
	n=2	1	1
ϵ -envy-free (connected)	n = 3	$O(\log \epsilon^{-1})$ (*)	$\Omega(\log \epsilon^{-1})$ (*)
	$n \ge 4$	$O(n/\epsilon)$ (*)	$\Omega\left(\log\epsilon^{-1} ight)(*)$
e-perfect (minimum cuts)	n=2	$O(\log \epsilon^{-1})$ (*)	$\Omega(\log \epsilon^{-1})$ (*)
	$n \ge 3$	$O\left(n^3/\epsilon\right)$ [BM15]	$\Omega\left(\frac{\log \epsilon^{-1}}{\log \log \epsilon^{-1}}\right) [PW17]$
6-equitable (connected)	n=2	$O(\log \epsilon^{-1})$ [CP12]	$\Omega(\log \epsilon^{-1})$ (*)
c-equitable (connected)	$n \ge 3$	$O\left(n\left(\log n + \log \epsilon^{-1}\right)\right)$ [CP12]	$\Omega\left(\frac{\log \epsilon^{-1}}{\log\log \epsilon^{-1}}\right) [PW17]$
envy-free (exact)	$n \ge 2$	$O\left(n^{n^{n^{n^n}}}\right)$ [AM16]	$\Omega(n^2)$ [Pro09]
proportional (exact)	$n \ge 2$	$O\left(n\log n\right)$ [EP84]	$\Omega(n \log n)$ [WS07, EP06b]

Perfect Allocations: Austin's procedure

Perfect Allocations: Austin's procedure

Perfect Allocations: Austin's procedure

Theorem: Computing an ε -perfect allocation for n=2 players with two cuts in the (RW) query model takes $\Theta(\log(1/\varepsilon))$ queries.

(Proof) Upper bound: binary search on the position of the first knife.

(Proof) Lower bound: Maintain throughout execution 2 intervals I and J:

- the protocol has not made any cuts inside I and J,
- any allocation obtained with cuts outside I and J is far from perfect, and
- the distance to a perfect allocation cannot decrease much with any Cut query

(Proof) Lower bound (cont).

	[0,x]	[x, x + a]	[x+a,y]	[y, y + a]	[y+a,1]
V_1	\boldsymbol{x}	a	0.5 - a	a	b
V_2	c	d	0.5 - 2d	3d	e

If a Cut query falls outside [x,x+a] or [y,y+a], answer consistent with history. Else, say player 1 gets $Cut_1(\alpha)$:

Case 1: α ∈ [c, c + d/2]. Let m = x + a/2, n = x + 51a/100, p = y+a/2, q = y + 51a/100.

	[0, x]	[x,m]	[m,n]	[n, x + a]	[x+a,y]	[y,p]	[p,q]	[q, y + a]	[y + a, 1]
V_1	x	a/2	a/100	49a/100	0.5 - a	a/2	a/100	49a/100	b
V_2	c	d/2	d/8	3d/8	0.5 - 2d	11d/8	3d/8	10d/8	e

(Proof) Lower bound (cont).

• 3 more cases: $\alpha \in [c+d/2,c+d]$, [0.5+c-d, 0.5+c+d/2], [0.5+c+d/2,0.5+c+2d]

Starting configuration:

Connected Equitable Allocations: n=2 players

Theorem: Computing a connected ε -equitable allocation for n=2 players takes $\Theta(\log(1/\varepsilon))$ queries.

(Proof) Upper bound: Cechlarova and Pillarova 2012.

Lower bound: Maintain throughout execution an interval I such that

- the protocol has not made any cut inside I
- the distance to an equitable allocation by cutting outside I is high, and
- the interval I cannot be diminished by much with any single Cut query

Connected Equitable Allocations: n=2 players

(Proof) Lower bound (cont):

Starting configuration: a = 0.05 and b = 0.06

	[0, 0.4]	[0.4, 0.6]	[0.6, 1]
V_1	0.55	0.01	0.44
V_2	0.44	0.01	0.55

Connected Envy-free Allocations: n=3 players

Theorem: Computing a connected ε -envy-free allocation for n=3 players takes $\Theta(\log(1/\varepsilon))$ queries.

(Proof) Upper bound: We simulate a moving knife procedure due to Barbanel and Brams in the RW model.

Connected Envy-free Allocations: n=3 players

(Proof) Lower bound: Use valuations drawn from class of "generalized rigid measure systems":

- the density of each measure is bounded: $1/\sqrt{2} < v_i(x) < \sqrt{2}$, for each player i
- there exist points x, $y \in [0, 1]$, such that for each player i there exist $0 < s_i < 1/3 < t_i < 1/2$ and the matrix of valuations satisfies the constraints in the table:

	[0,x]	[x,y]	[y,1]
V_1	t_1	t_1	s_1
V_2	s_2	t_2	t_2
V_3	t_3	s_3	t_3

*Stromquist first introduced a variant of rigid measure systems to show an impossibility for RW protocols.

Connected Envy-free Allocations: n=3 players

(Proof) Lower bound (cont): Maintain throughout execution two intervals I, J:

- there are no cut points inside I and J, and any allocation that does not use cuts in I and J has high envy
- the intervals I, J cannot be diminished much with a single Cut query

Starting configuration:

	[0, 0.34]	[0.34, 0.35]	[0.35, 0.67]	[0.67, 0.68]	[0.68, 1]
V_1	0.35	0.01	0.35	0.01	0.28
V_2	0.28	0.01	0.35	0.01	0.35
V_3	0.35	0.01	0.28	0.01	0.35

Moving Knife Protocols

Moving Knife Step: devices 1 ... K ("knives" and "triggers") move along the cake as time proceeds from α to ω . The value of each device j, x_j , is a function of time, of the values of devices 1...j-1, and of the valuations of the players for pieces demarcated by knives at that time.

- value of knife: its position
- value of trigger: arbitrary.

A moving knife step ends when a trigger "fires", i.e. when $x_i(t) = 0$ for some j, t.

Outcome of a step:

- index of a trigger j with $x_i(\alpha) * x_i(\omega) \le 0$
- a time t where $x_i(t) = 0$
- values of all other devices at this time.

Moving Knife Protocols

Moving Knife Protocol: has finite number of steps, each of which is either an RW query or a moving knife step.

Example: Austin's procedure can be cast a single moving knife step, with 3 Devices:

- Knife 1: position $x_1 = time$
- Knife 2: position x₂ depends on time and valuation of player 1
- Trigger: value $x_3 = V_1(knife_1, knife_2) 0.5$

Theorem (informal): Fair Moving Knife protocols with a constant number of steps can be simulated approximately with $O(log(1/\epsilon))$ queries.

Moving Knife Protocols

Main open question: super-logarithmic query complexity lower bound for computing connected ε -envy-free allocations for $n \ge 4$ players or perfect allocations for $n \ge 3$ players.

• This would imply no moving knife protocol can exist.

Beyond infinite precision models: A few words on communication complexity

We need bounded density: $v_i(x) < D$, for some constant D. This is the correct interpretation of no-atoms in the communication model

For simplicity n is arbitrary but fixed.

Communication complexity: Each player knows its own input v_i . An F-fair protocol is a tree that on every input $v = (v_1, ..., v_n)$ reaches a leaf marked with an allocation that is F-fair for v.

Beyond infinite precision models: A few words on communication complexity

The deterministic communication complexity of F, D(F) :

• the number of bits sent on the worst case input by the best communication protocol that computes F-fair allocations.

The randomized communication complexity of F, $R_{s}(F)$:

• the worst case number of bits sent by the best randomized protocol that computes F-fair allocations with probability $1 - \epsilon$.

(error probability taken over the random choices of the protocol on the worst case input).

3 classes:

"Easy" problems: Admit bounded protocols in the RW model.

Theorem (upper bound): The following problems have communication protocols with a constant number of rounds of communication $O(\log(1/\epsilon))$ per round:

- For any fixed n, a connected ε-proportional allocation among n players.
- For any fixed n, for some constant C that depends on n, an ε-envy-free allocation with at most C cuts, for n players.

Theorem (lower bound): Every (deterministic or randomized) protocol for computing a (not necessarily connected) ϵ -proportional allocation among $n \ge 2$ players requires $\Omega(\log(1/\epsilon))$ bits of communication.

"Medium" problems: Admit moving knife protocols:

Theorem (upper bound): The deterministic communication complexity of the following problems is $O(\log^2 \varepsilon^{-1})$:

- ε -perfect allocation with 2-cuts between n = 2 players,
- a connected ε -equitable allocation between n = 2 players,
- a connected ε -envy-free allocation among n = 3 players.

The randomized communication complexity of these problems is O(log ϵ^{-1} log log ϵ^{-1}).

"Medium" problems: Admit moving knife protocols:

Theorem (lower bound): Any (deterministic or randomized) protocol for finding

- an ε -perfect allocation with 2-cuts between n = 2 players
- a connected ϵ -equitable allocation between n = 2 players

using rounds of communication of $polylog(\epsilon^{-1})$ -bits each requires $\Omega(\log \epsilon^{-1} / \log \log \epsilon^{-1})$ rounds of communication.

Medium problems are intuitively equivalent to the **Crossing Problem**:

Alice gets sequence of numbers $x_0, x_1, ..., x_m$ with $0 \le x_i \le m$ and Bob gets $y_0, y_1, ..., y_m$ with $0 \le x_i \le m$, where $x_0 \le y_0$ and $x_m \ge y_m$. Goal: find an index i such that either both $x_{i-1} \le y_{i-1}$ and $x_i \ge y_i$ or that both $x_{i-1} \ge y_{i-1}$ and $x_i \ge y_i$.

Bounds on the communication complexity of the crossing problem + reductions between the fair division problems and crossing.

"Hard" problems: No moving knife protocols known.

Natural candidates:

- connected ϵ -envy-free allocation for $n \ge 4$ players
- perfect for $n \ge 3$ players

Main open question: Separate the "hard" from "medium" \rightarrow Show superpolylogarithmic lower bounds on the communication complexity of these problems.

THANK YOU