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What is their function?
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R&D spending:

2016
US 511B US$
China 452B US$, PPP
Japan 166B US$, PPP

AI, 2017
US ∼ 10B US$
China ∼ 7B US$, PPP ?
Japan ∼ 0.7B US$, PPP ?

Total energy consumption of data centers:
between 1% and 2% of the world energy consumption
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Where the money is:
Big data — control and manipulation
The “NSA” graph
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The Internet: the router level, the AS level
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The WWW

Large social networks — everything, from where you can
get data; sociology
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Recommendation networks
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Biology:
Chemical reaction networks, market ∼1B US$

Genetic regulatory networks
Power grids
Transportation networks
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Deep learning

Brain networks
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Simple vs Complex

• Progress: simple −→ complex

• Regress: complex −→ simple

Complexity: mathematical meaning — the time of exact
solution t(N)

Complex networks: more complex than classical random
graphs
The term coined by Laszló Barabási

Searching for simple solutions of complex systems
— it’s not easy
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Random or deterministic
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Random graph
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History:

Leonhard Euler, 1735, Königsberg bridge problem
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George Udny Yule, ∼1910
Explaining heavy tails of distributions in nature
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Ray Solomonoff

Anatol Rapoport
1950, discovery of the giant connected component
transition
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Paul Erdős

Alfréd Rényi
1950s, Erdős–Rényi random graphs
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Herbert Alexander Simon
1950s, theory of fat-tailed distributions in nature
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Paul Baran

Donald Watts Davies
∼1960, architecture of the Internet
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Derek John de Solla Price
∼1960+, generated growing scale-free networks
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Stanley Milgram
1967, small worlds, six degrees of separation
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Mark Granovetter
∼ 1970, the strength of weak ties, sociology
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Per Bak
1980s, self-organized criticality
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Trends

• Sampling

• Inference

• Reconstruction
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Deep learning

• Batch size:

if — small, then fast training, high accuracy, low
generalization

• Overfitting

Exploding/vanishing gradients

• Dependence on initial conditions
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Treating random systems in mathematics
and statistical mechanics:

• Statistical ensemble:

the full set of possible configurations of a system
together with
their statistical weights (∼ probabilities of realization)
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Classical random graphs:

Gn,p model vs ER model

Canonical ensemble vs microcanonical ensemble

Equivalence in the infinite size limit

Violation of the equivalence in other models (the
configuration model vs Chung-Lu)

Locally tree-like graphs when sparse.

The birth of the giant connected component at 〈q〉 = 1.

( ) 27 / 77



Equilibrium trees vs recursive trees

Equilibrium trees: dH =∞, 〈`〉 ∼ lnN

Recursive trees: dH = 2, 〈`〉 ∼ N1/2

Both have Poisson degree distributions
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Measuring the “Hausdorff” dimension:

〈N (`) ∝ `dH

Example: measuring dH and dS of evolving networks of
triangulations — strongly constrained planar graphs.
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Evolution of triangulation networks:

• local structure — ???
(degree distribution, degree–degreecorrelations)

• space dimension — ???
(Hausdorff and spectral dimensions)
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Triangular mesh operations—1:

Pachner moves:

1−move

2−move

0−move

P1

P2
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Triangular mesh operations—2:

S
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Hausdorff dimension:
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Spectral dimension:

ϕ0(t) ∼ t−dS/2, ρ(λ) ∼ λdS/2−1

dS ≤ dH
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E1 vs. equilibrium random trees

Model E1:
random addition and addition vertices of degree 3 with
equal rates.

dH ∼ 2(?), dS = 1.4(2).

Equilibrium random trees:

dH = 2, dS = 4/3.

vs typical random planers who’s dH = 4.
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Triangles
Density of triangles vs density of edges:

d2 ≡
N2

N(N − 1)/2
, d3 ≡

N3

N(N − 1)(N − 2)/6

d3 ≤ d
3/2
2
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Clustering of classical random graphs:

C = C =
〈q〉
N

= p

N3 = 〈q〉3/6

For classical random graphs:

d3 = d3
2
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Clustering coefficient C vs average

clustering C :

C (k) ≡ 〈lnn(k)〉
k(k − 1)/2

C ≡
∑

k

P(k)C (k)

C ≡
∑

k P(k)〈lnn(k)〉∑
k P(k)k(k − 1)/2

=

∑
k k(k − 1)P(k)C (k)

〈k2〉 − 〈k〉
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Generalizing classical random graphs

The configuration model (random graph with a given
degree sequence) — a micro-canonical ensemble

Models with hidden variables, Chung-Lu model (random
graph with a desired degree sequence) — a canonical
ensemble

Uncorrelated networks

Local tree-likeness of these models if the networks are
sparse

The problem of non-equivalence
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Degree distribution of the nearest
neighbour

Let the degree distribution of an uncorrelated network be
P(q)

Then the degree distribution of a neighbour of a
randomly chosen vertex is

qP(q)

〈q〉
.

This is also the distribution of an end vertex of a
randomly chosen edge.
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The joint distribution of the degrees of the ends of an
edge is

P(q, q′) =
qP(q)

〈q〉
q′P(q′)

〈q〉
.

Average branching 〈b〉 =
〈q2〉
〈q〉
− 1.

Ultra-small worlds if 〈q2〉 → ∞.

The Molloy–Reed criterion for the existence of the giant
connected component, 〈b〉 > 1, i.e.,

〈q2〉 > 2〈q〉.
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Size S of the giant connected component
in uncorrelated tree-like nets:

X =
∑

q

P(q)X q ≡ G (X ),

where G (X ) is the generating function of P(q).

1− S =
∑

q

qP(q)

〈q〉
X q−1 =

G ′(X )

〈q〉
,

Super-resilience if 〈q2〉 → ∞
Degree distribution cutoffs
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Laplace operator

D : dij = qiδij .

L = D − A, Lij = qiδij − aij .

dϕi (t)

dt
= −

∑
j

Lijϕj(t)

dϕi

dt
= −

∑
j∈i

(ϕi − ϕj)
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Spectral dimension dS :

ϕ0(t) ∝ t−dS/2

ρL(λ) ∝ λdS/2−1

dS ≤ dH
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Modularity:

Q =
1

2m

∑
ij

(
Aij −

kikj

2m

)
δ(αi , αj)

ki =
∑

j Aij , m = 1
2

∑
ij Aij .

— comparison with the null model ≡ the configuration
model.
Q for a given set of communities
≡
(the fraction of edges that fall within the communities)
−
(the expected fraction of edges within these communities
for the configuration model with the same node degrees).
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−1 < Q < 1

Bad points:
• Q can be nonzero for graphs even without
communities (trees);
• resolution limit;
• overlapping communities;
• a difficult optimization problem.

( ) 46 / 77



Stochastic block model:

The main test tool for community detection algorithms

k types of vertices — k blocks in a network, α = 1, ..., k

qα, α = 1, .., k , is the probability that a vertex ∈ block α.

If vertex i ∈ block α and vertex j ∈ block β,
then they are connected with the probability pαβ.

cin is the total fraction of edges within blocks.
cout is the total fraction of edges between blocks.
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According to the communities detection algorithm times,

k ≤ 4:

detectable — undetectable

detectable if
cout
cin

< εc

(εc is the point of the second order phase transition)

undetectable if
cout
cin

> εc

k > 4:

detectable — hard detectable — undetectable

(the first order phase transition).
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Spectral algorithms for community
detection
Studying 1st and 2nd eigenvectors of A or L, etc.
Works well for dense graphs where the localization of the
components of eigenvectors on hubs is absent.
This localization is due to returns of a random walk to
hubs in sparse networks.
How to avoid it?
Study the eigenvectors of the matrix B which describes a
non-backtracking walk:

Bi→j ,k→l = δjk(1− δil ).

It reduces the problem of localization.
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Greedy detection of communities in large
nets:

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre (2008)
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• modularity is optimized by allowing only local changes
of communities;
• the found communities are aggregated forming a new
network of communities;
• repeat ... ... ...
The simplicity of the algorithm is due to the fact that at
each step all its communities are single-node.
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• For each node i consider all j ∈ i and evaluate the gain
of Q that would take place by removing i from its
community to the community of j .
• The node i is then placed in the community for which
this gain is maximum, but only if this gain is positive.
• If no positive gain is possible, i stays in its original
community.
• This process is applied repeatedly and sequentially for
all nodes until no further improvement can be achieved.
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Treating networks with short cycles:
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The average branching 〈b〉 = λ1 of the matrix B
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Centrality index for optimal percolation:

∑
j∈∂i

v
(λ1)
i←j v

(λ1)
j←i

( ) 55 / 77



Strong heterogeneity produces
non-mean-field critical exponents:

Upper critical dimension

Uncorrelated scale-free networks

Super-resilience if γ ≤ 3 (〈q〉 → ∞)

Growing networks with a BKT phase transition

The Ising model on complex networks
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Non-equilibrium statistical mechanics:

∂tP(g , t) =
∑
g ′∈G

[W (g , g ′)P(g ′, t)−W (g ′, g)P(g , t)]
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Random recursive graphs
At each time step, attach the new vertex to uniformly
randomly selected vertex/vertices.

P(q, t) =
1

t
〈N(q, t)〉.

〈N(q, t+1)〉 = 〈N(q, t)〉+1

t
[〈N(q−1, t)〉−〈N(q, t)〉]+δq,1.

(t+1)P(q, t+1)−tP(q, t) = P(q−1, t)−P(q, t)+δq,1.

P(q, t) + t∂tP(q, t)
t→∞−→ P(q) = P(q− 1)−P(q) + δq,1.

P(q) = 2−1−q,

i.e, an exponential degree distribution.
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Preferential attachment
Proportional preference:
at each time step, attach the new vertex to a vertex

selected with the probability
q

t〈q〉
=

q

2t
.

〈N(q,t+1)〉=〈N(q,t)〉+ 1

2t
[(q−1)〈N(q−1,t)〉−q〈N(q,t)〉]+δq,1.

(t+1)P(q, t+1)−tP(q, t)=(q−1)P(q−1, t)−qP(q, t)+δq,1.

P(q) = (q − 1)P(q − 1)− qP(q) + δq,1.

P(q) ∝ q−3,

Prob(i) ∝ qi + A =⇒ P(q) ∝ q−γ, 2 < γ ≤ ∞
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Link copying:
A directed network:

Choose uniformly at random a vertex (1) and make a
link to its descending neighbour (2).
This produces (approximately) the proportional
preferential attachment (Prob ∝ qin).
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Duplication mechanism:

The white vertex is a new protein.
The duplication mechanism effectively produces the
proportional preferential attachment.
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k-cores:

• The k-core of a network is its largest subgraph whose
nodes have at least k connections (within this subgraph).

• The local pruning algorithm:

Remove from a graph all nodes of degree less than k .

Some of the remaining nodes may occur with less than k
links. Prune these nodes, and so on.

The final result, if it exists, is the k-core.
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k-core sets in uncorrelated networks.
(a) 〈q〉 <∞.
(b) 〈q〉 → ∞.
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Hybrid transition: S ∼= Sc + C
√
〈q〉−qc

(a) Continuous, (b) first order, (c) hybrid phase
transitions. HPT is the limit of stability of the FOPT.
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Multilayer networks
Multiplex networks, interdependent networks, nets of
nets.

Three percolation problems for multiplex networks:

The giant analogies of (a), (b) are the results of global
pruning; of (c) is the result of local pruning.

A giant mutually connected component in
interdependent networks corresponds to (a).
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Cascade of failures in interdependent
networks:

1 — the pruning takes a finite time,
2 — power-law (infinite) relaxation,
3 — exponential (infinite) relaxation.
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Google PageRank:

ri =
p

N
+ (1− p)

∑
j∈
−→
∂ i

rj

qout,j
,

p = 0.15

Uncorrelated networks:

〈r〉(qin, qout) =
p

N
+

1− p

N

qin
〈qin〉

.
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Prisoner’s dilemma:
Each of two players independently decides for himself
which is better:

to cooperate, C , or to defect, D?

The decision is based on the set of payoffs for the players:

Players: Their payoffs:

(C ,C ) (1, 1)
(C ,D) (0, b)
(D,C ) (b, 0)
(D,D) (0, 0)

b > 1, so defect
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Evolutionary games on networks:

Many players, can adopt/imitate strategies of their
neighbours.
σi = C ,D is the state/strategy of player i
An adaptive player: adopts the most successful strategy
in his close environment (the player himself and his
nearest neighbours).
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spatial prisoners dilemma

Stochastic version:
• The initial concentration of cooperators c = 1/2.
• Then all of the pairs of nearest neighbours play the
game independently, and after this round, each player i
accumulates his payoffs as Pi .
• After that, for each player i , choose at random one of
its neighbours, j , and compare the scores Pi and Pj .
(a) If Pi > Pj , then leave σi unchanged.
(b) Otherwise, let player i accept the strategy of j with
some probability.
• Then, pass to the next round, recalculate all the scores
and so on.
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Biased imitation in coupled evolutionary
games:
Layer 1: PD, layer 2: Snowdrift Game
Players imitate neighbours in their layer with prob p, and
neighbours from the other layer with prob 1−p.
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Isolated layers:
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Random regular graph
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“Exact” solution for well-mixed
populations:
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This stuff is interesting

P. S. For books [3] and [4], see http://sweet.ua.pt/sdorogov/ and

https://sites.google.com/site/sergeydorogovtsev/lectures_on_

complex_networks
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