House allocation & Housing market

### Somouaoga BONKOUNGOU

#### National Research University Higher School of Economics

March 6, 2019

## Last lecture

- the Deferred Acceptance algorithm (DA) produces a stable matching:
  - the most preferred stable matching for the proposing side,
  - the least preferred stable matching for the receiving side,
- DA is strategyproof for the proposing side, but not for the receiving side,
- we cannot have, in general, strategyproofness for both sides and stability,
- any man or woman who did not receive his side optimal-stable's mate at a stable matching mechanism can misrepresent his preferences in such a way to receive it.

## Blocking lemma

#### Lemma (Blocking lemma)

Let  $\mu$  be an individually rational matching with respect to strict preferences P, and let M' be the set of all men who prefer  $\mu$  to  $\mu_M$ .

If M' is nonempty, there is a pair (m, w) that blocks  $\mu$  such that  $m \notin M'$  and  $w \in \mu(M')$ .

イロト イポト イヨト イヨト

æ

3/24

## House allocation & Housing markets: real-life applications

4/24

- Organ allocation,
- domitory room allocation at universities,
- school choice programs,
- parking space,
- office allocation,
- allocation of irrigated parcels,
- course allocation.

## Characteristics

- indivisibilities,
- one-sided preferences,
- no monetary compensation
- public or private ownership

(日) (四) (三) (三)

臣

5/24

## Outline

- House allocation
  - Serial dictatorship
  - Characterization
- Housing market
  - Top trading cycle
  - Competitive equilibrium

(日) (四) (三) (三)

臣

6/24

Characterization

## Model

A house allocation problem (Hylland & Zeckhauser, JPE 1979) is a triple  $(N, H, \succ)$  where:

イロト イロト イヨト イヨト

æ

7/24

- N is a set of agents
- H is a set of houses
- $\succ$  is a list of preferences over H

#### Assumption

- We assume that preferences are strict,
- |H| = |I|.

## Model

## An allocation is a bijection $a: I \rightarrow H$ where a(i) is the house assigned to agent *i*.

イロト イロト イヨト イヨト

æ

8/24

## Efficient house allocation

- After matching, and if allowed, agents can swap houses
- improving agents' welfare is desirable.

#### Definition

An allocation a is Pareto efficient if there is no other allocation b such that

```
for each agent i, b(i) \succeq_i a(i),
```

and

```
for some agent i, b(i) \succ_i a(i)
```

## Which mechanisms are recommendable?

#### Definition

A mechanism  $\varphi$  maps the set  $\mathcal{P}^I$  of preference profiles to the set  $\mathcal M$  of matchings.

- A mechanism  $\varphi$  is efficient if for preference profile  $\succ$ ,  $\varphi(\succ)$  is efficient.
- A mechanism φ is strategy-proof if for each ≻, each agent i there is no ≻'<sub>i</sub> such that

$$\varphi_i(\succ'_i,\succ_{-i})\succ_i \varphi_i(\succ).$$

<ロト < 部 > < 臣 > < 臣 > 三 の < ? 10/24

## Which mechanisms are recommendable?

#### Definition

A mechanism φ is neutral if for each permutation (relabelling)
π : H → H, each preference profile ≻, for each agent i,

$$\varphi_i(\pi(\succ)) = \pi(\varphi_i(\succ)).$$

 A mechanism φ is non-bossy if for each preference profile ≻, agent i and each ≻'<sub>i</sub>

$$\varphi_i(\succ'_i,\succ_{-i})=\varphi_i(\succ)\Rightarrow\varphi(\succ'_i,\succ_{-i})=\varphi(\succ).$$

<ロト < 団ト < 臣ト < 臣ト 三 のへで 11/24

Introduction Outline House allocation problems Housing market

# SD as a unique strategy-proof, neutral and non-bossy mechanism

#### Theorem (Svesson, 1999)

A mechanism is strategy-proof, neutral and non-bossy if, and only if, it is serial dictatorship.

#### Definition (Serial dictatorship)

There is an ordering of the agents. For each preference profile  $\succ$ , the agent ordered first picks his most preferred house, the agent ordered second picks his most preferred house among the remaining houses etc.

Note that SD is efficient.

## SD as a unique strategy-proof, neutral and non-bossy mechanism

- Neutrality: calibration for maximum conflicting preferences For each preference profile ≻ in which agents have the same preference, the same agent receives his most preferred house, the same agent receives his second most preferred house, etc.
- Strategy-proofness and non-bossiness: Let ≻ be a preference profile. We claim that φ(≻) = SD<sup>f</sup>(≻). Let a<sub>1</sub> be the house allocated to agent f(1) under SD<sup>f</sup>(≻), a<sub>2</sub> the house allocated to agent f(2) under SD<sup>f</sup>(≻) etc. Let ≻\* be the preference profile where each agent orders house a<sub>1</sub> first, house a<sub>2</sub> second, etc.

## Model

- A housing market is a couple  $(N, \succ)$ 
  - N is a set of agents
  - Each agent *i* has one house denoted *i*
  - $\succ$  is a list of preferences such that, for each  $i, \succ_i$  is agent i's preference over N.

#### Assumption

We assume that agents have strict preferences.

## Core of a market

#### Definition

An allocation b weakly dominates another a via a coalition  $S \subset N$  if

- b(S) = S,
- for each  $i \in S$ ,  $b(i) \succeq_i a(i)$
- for some  $i \in S$ ,  $b(i) \succ_i a(i)$ .

The core of a market is the set of allocations which are not dominated.

15/24

## The core is nonempty

#### Theorem

The core of the market  $\succ$  contains one allocation: it is the allocation obtained by the top trading cycles algorithm.

Top Trading Cycles (TTC) algorithm (attributed to Gale) • Step 1:

- Each agent points to his most preferred house, (there is cycle!)
- each agent in each cycle is assigned to the house he is pointing to and these agents and the corresponding houses are removed.

## The core is nonempty

#### • Step 2:

- Each agent points to his most preferred house among those that remain, (there is cycle!)
- each agent in each cycle is assigned to the house he is pointing to and these agents and the corresponding houses are removed.

## The core is nonempty

#### • Step k:

- Each agent points to his most preferred house among those that remain, (there is cycle!)
- each agent in each cycle is assigned to the house he is pointing to and these agents and the corresponding houses are removed.

The algorithm terminates when no agent and a house remain.

HW: Prove that the algorithm is well-defined.

## TTC: example



#### Proof of the theorem.

<ロト 4 回 ト 4 臣 ト 4 臣 ト 19/24

## Competitive equilibria

#### Definition

A pair (a, p) of an allocation a and a n-vector of positive and non-zero prices is a competitive equilibrium for the market  $\succ$  if

- for each agent *i*,  $p_{a(i)} \leq p_i$  (budget constraint)
- for each  $i, j \in N$ ,  $j \succ_i a(i) \Rightarrow p_j > p_i$  (maximizing utility).

#### Theorem (Roth & Postlewaite, 1977)

For each market, there is a unique competitive equilibrium allocation: it is the allocation given by TTC.

#### Proof.

• TTC allocation is an equilibrium allocation

• every competitive equilibrium allocation coincides with TTC (HW)

## Competitive equilibria

#### Definition

A pair (a, p) of an allocation a and a n-vector of positive and non-zero prices is a competitive equilibrium for the market  $\succ$  if

- for each agent *i*,  $p_{a(i)} \leq p_i$  (budget constraint)
- for each  $i, j \in N$ ,  $j \succ_i a(i) \Rightarrow p_j > p_i$  (maximizing utility).

#### Theorem (Roth & Postlewaite, 1977)

For each market, there is a unique competitive equilibrium allocation: it is the allocation given by TTC.

- TTC allocation is an equilibrium allocation
- every competitive equilibrium allocation coincides with TTC (HW)

## TTC is efficient, IR and strategy-proof

#### Definition

A mechanism  $\varphi$  is individually rational if for each market  $\succ$  and each agent i,

$$\varphi_i(\succ) \succeq_i i.$$

イロト イポト イヨト イヨト

臣

21/24

#### Theorem

TTC is efficient and individually rational.

#### Theorem (Roth, 1982)

TTC mechanism is strategy-proof.

Introduction Outline House allocation problems Housing market

# TTC is the unique efficient, IR and strategy-proof mechanism

#### Theorem (Ma, 1994)

A mechanism is strategy-proof, efficient and IR if, and only, if it is TTC.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト - ヨ - -

22/24

## Take-away

- Serial dictatorship for house allocation (when the houses are not owned by any agent)
- TTC for housing market (when houses are owned by individual agents).

Next lecture: school choice!

Application of our theory and development of new theory.

