Guarantees in Fair Division: beyond Divide and Choose and Moving Knives

Hervé Moulin University of Glasgow and HSE St Petersburg

HSE and European University seminar St Petersburg October 17, 2019

joint work with Anna Bogomolnaia and Richard Stong

-

Divide & Choose ($D\&C_2$): the ancestor of mechanism design

recent (1948) generalisation to any number n of agents:

- the Diminishing Share (**DS**) rule (one way to generalise D&C: Steinhaus 1948)
- the Moving Knife (**MK**) rule (Dubins and Spanier 1961)

attractive features

- decentralized implementation of the *Proportional Guarantee*: the utility of my share is at least $\frac{1}{n}$ -th of that of the whole manna
- informational parsimony as *privacy preservation*: I reveal very little of my preferences, at most one cut and n 1 queries for DS, n 1 "queries" for MK
- informational parsimony as *small cognitive effort*: I do not need to form full preferences

unappealing features

- work for goods, or bads, but not for a mixed manna: both rules requires *co-monotone* utilities (else trimming or padding is ambiguous)
- both require *additive utilities/preferences*: otherwise the Proportional Guarantee is neither feasible nor ordinally meaningful
- (both pick inefficient allocations: a consequence of informational parsimony)

- we generalize D&C₂ to the n-person D&C_n implementing the Proportional Guarantee when utilities are additive, but the sign of marginal utilities varies across the manna and across agents; it requires neither trimming nor padding, and is informationally parsimonious
- D&C_n implements, for the much, much larger class of continuous, not necessarily monotonic preferences, the **minMax Guarantee**: the utility of my best share in the worst possible partition
- when preferences are co-monotone (all parts of the manna are desirable goods, or all are undesirable bads) we generalize MK_n to the rich family of Bid & Choose (**B&C**) rules: they implement better guarantees than the minMax, though still below the unfeasible Maxmin utility

- parsimonious computation of an efficient allocation of resources: Reiter (1972)), e. g. the competitive equilibrium: Mount and Reiter (1972), Reischelstein and Reiter (1988)
- protective/prudent implementation: Moulin (1981), Barbera and Dutta (1982), and in the entire cake-cutting literature: Brams and Taylor (1996), (2000)
- identifying the best welfare bounds (upper or lower guarantees) in cooperative production: Moulin (1990, 1991), Fleurbaey and Maniquet (1996); in fair division: Moulin (1991)
- guarantees when we distribute indivisible objects Buddish (2011), Procaccia and Wang (2014), ···

additive utilities, continuous model

the manna Ω is a measurable set in an euclidian space

utility u_i of agent $i \in N$ is a non atomic *real valued* measure on Ω (u_i is absolutely continuous w. r. t. Lebesgue): $u_i(S) = \int_S du_i(x) = \int_S \dot{u}_i(x) dx$

compare: in most of the cake-cutting literature all u_i are positive, or all negative

Fair Guarantee

Proportional Guarantee (**Pro**):
$$u_i(S_i) \geq rac{1}{n} u_i(\Omega)$$
 for all i

additive utilities, discrete model

 Ω is a finite set of objects

utility of agent $i \in N$ is a vector in $u_i \in \mathbb{R}^{\Omega}$, $u_i(S) = \sum_{x \in S} u_{ix}$

Fair Guarantee: proportional up to one object

Pro1:
$$\exists a \in \Omega \setminus S_i : u_i(S_i + a) \ge \frac{1}{n}u_i(\Omega)$$

and/or
$$\exists b\in \Omega: u_i(S_i-b)\geq rac{1}{n}u_i(\Omega)$$
 for all i

a combinatorial Lemma

Fix the sets A of p items, M of p-1 agents, and an arbitrary bipartite graph of "likes" in $M \times A$ described for all $B \subseteq A$ by

 $\ell(B) = \{i \in M | i \text{ likes at least one item in } B\}$

There exists a non empty $B \varsubsetneq A$ and a possibly empty $L \subseteq M$ such that

$$\ell(B) = L$$
; $|L| = |B| - 1$ and

we can assign all but one item in B to an agent in L who likes it Proof: simple application of the Marriage Lemma the D&C_n rule (continuous or discrete model)

order the agents $1, \dots, n$; agent 1 partitions Ω in n shares S_k she is reputed to *like* (Fair Guarantee); other agents report **all** the shares they *like*, and **at least one**

find a subset B of shares and L of agents in $\{2, \cdots, n\}$ s. t. we can assign to everyone in L + 1 a share he likes, and nobody outside L + 1 likes any share in B

repeat with the remaining manna and agents: the lowest agent in [n] - (L+1) partitions $\Omega - \bigcup_B S_k$ in n - |L| - 1 shares she is reputed to like, etc..

 \rightarrow important privacy feature: I do not report which individual objects I like or dislike

Theorem: *additive utilities*

continuous model: an agent who cuts shares of equal value when called to cut, and otherwise reports at each step all shares worth at least $\frac{1}{n}u_i(\Omega)$ (even if we divide less than Ω among less than n agents), ensures that her share meets Pro.

discrete model: an agent who cuts shares meeting Pro1 when called to cut, and otherwise reports at each step all shares meeting Pro (*not Pro1* !) in the entire Ω , ensures that his share meets Pro1.

proof in the continuous model

1. every share in an *equi-partition* gives the utility $\frac{1}{n}u_i(\Omega)$

2. at each step where i is not served while q other agents are, the per capita value to i of the remaining cake increases weakly

proof in the discrete model: in any partition with per capita value at least $\frac{1}{n}u_i(\Omega)$, at least one share meets Pro1; in a *Maxmin* partition, maximizing the utility of her worst share, all shares meet Pro1; so she can at any step partition the remaining manna in shares meeting Pro1

the general continuous model

 Ω is a compact set in an euclidian space s. t. $\Omega = \overset{\frown}{\Omega}$; shares are the closed subsets $\varnothing \subseteq S \subseteq \Omega$ or some subfamilies of these (e. g., connected subsets); "partitions" allow for overlaps of lower dimension

individual utilities are real valued, continuous for the Hausdorff distance, and

$$u(arnothing) = \mathsf{0} ext{ and } u(S) = u(\overset{\circ}{S})$$

example: the fair division of Arrow Debreu commodities

the general discrete model Ω is a finite set, u is real valued on 2^{Ω} and $u(\emptyset) = 0$

the hard question: under general utilities/preferences, what Guarantees are feasible, and parsomoniously implementable?

the Maxmin share (Buddish (2011)): a natural (ordinal) proposal in the spirit of D&C:

$$Maxmin(u; n) = \max_{P} \min_{1 \le k \le n} u(S_k)$$

where $P = (S_k)_{k=1}^n$ is a *n*-partition of Ω

in the continuous model with additive utilities $Maxmin(u; n) = \frac{1}{n}u_i(\Omega)$, but with general utilities the profile $(Maxmin(u_i; n))_{i \in N}$ is easily not feasible, already with two agents

Example agents 1 and 2 with utilities u and v divide $\omega = (1, 1)$

$$u(x,y) = \min\{x,y\}$$
; $v(x,y) = \max\{x,y\}$
 $Maxmin(u;2) = u(\frac{1}{2}\omega)$; $Maxmin(v;2) = v(\omega)$

consider instead the (ordinal) minMax share (Shams et al. (2019))

$$minMax(u; n) = \min_{P} \max_{1 \le k \le n} u(S_k)$$

in the continuous model, if P is an equi-partition of Ω for u we have

$$minMax(u; n) \le u(P) \le Maxmin(u; n)$$

Lemma the continuity assumptions ensure that such an equi-partition exists

Proof: if u is non negative (all shares desirable) this follows from Su (1999) or a simple application of the KKM lemma. If u is real valued, the proof is harder.

example 1

$$\Omega$$
 is a square in \mathbb{R}^2 and $u(S)$ is the diameter of $\overset{\circ}{S}$: $\frac{Maxmin(u;2)}{minMax(u;2)} = \frac{\sqrt{2}}{2/\sqrt{5}} = 1.27$; $\frac{Maxmin(u;4)}{minMax(u;4)} = 2$

example 2: in the Arrow Debreu model: $minMax(u; n) \le u(\frac{1}{n}\omega) \le Maxmin(u; n)$

for n = 2 and $\omega = (1, 1)$ $u(x, y) = \min\{x, y\}$: $\min Max(u; 2) = 0 < u(\frac{1}{2}\omega) = Maxmin(u; 2)$ $v(x, y) = \max\{x, y\}$: $\min Max(v; 2) = v(\frac{1}{2}\omega) < v(\omega) = Maxmin(v; 2)$

Theorem: continuous model

in the D&C_n rule, an agent who cuts shares of equal value when called to cut, and otherwise reports at each step all shares worth at least $minMax(u_i; n)$ (over the entire Ω and with n agents), guarantees that utility level

note that agent 1 who cuts first is guaranteed $Maxmin(u_1; n)$, but other agent only $minMax(u_i; n)$

proof

1. at each step where i is not served, the shares served to the leaving agents are worth strictly less to i than $minMax(u_i; n)$

2. so if i is not cutting in the next step, at least one of the shares on offer is worth at least $minMax(u_i; n)$

3. and if *i* is cutting in the next step, any equi-partition of the remaining manna guarantees $minMax(u_i; n)$ as well

in the discrete model with general preferences, things are not so simple

- equi-partitions typically do not exist
- the minMax and Maxmin utilities are no longer comparable, e. g., if u is additive $Maxmin(u; n) \leq minMax(u; n)$
- neither guarantee is feasible, even under additive utilities (Procaccia and Wang (2014))

so the $D\&C_n$ rule is not interesting any more

note: the Maxmin Guarantee is at least $\frac{3}{4}$ -feasible if utilities are additive (Ghodsi et al. (2017)), but the corresponding algorithm is anything but simple or informationally parsimonious

monotone preferences: increasing $\mathcal{M}^+(\Omega)$, or decreasing $\mathcal{M}^-(\Omega)$ $\forall S \subset \Omega, T \subseteq \Omega \setminus S : u(S) \leq u(S \cup T) \text{ (or } u(S) \geq u(S \cup T))$

increasing: the manna is (weakly) desirable, *freely disposable*

decreasing: we divide non disposable "bads", "chores"

result: *in each domain we can improve substantially the minMax Fair Guarantee* the Moving Knife rule inefficiently restricts the available shares

the Bid & Choose rules (**B&C**) generalize MK by running a "more inclusive" knife

the B&C^{θ} rule: definition for **two** agents(continuous or discrete model)

 θ is an increasing and continuous *calibration* (benchmark utility) of the shares s. t. $\theta(\emptyset) = 0$, $\theta(\Omega) = 1$, and $\theta(S) = 0$ if S is not full dimensional

agent *i* bids $x_i \in [0, 1]$; (one of) the lowest bidder *i* can choose any share S_i such that $\theta(S_i) \leq x_i$; the loser *j* gets $\Omega \setminus S_i$

Theorem preferences in $\mathcal{M}^+(\Omega)$, continuous or discrete model

i) in the B&C^{θ} rule each agent can guarantee the utility level Γ^{θ}_{2}

$$\Gamma_2^{\theta}(u_i) = \max_{1 \le x \le 0} \min\{u_i^+(x), u_i^-(x)\}$$
(1)

where
$$u_i^+(x) = \max_{\theta(S) \le x} u_i(S)$$
; $u_i^-(y) = \min_{\theta(S) \le x} u_i(\Omega \setminus S)$

ii) the bid(s) x_i^* securing this Guarantee solves the program (1) above

iii) the Guarantee Γ_2^{θ} is maximal (unimprovable) and we have $minMax(u; 2) \leq \Gamma_2^{\theta}(u) \leq Maxmin(u; 2)$ for all u the rule B&C₂^{θ} is anonymous like MK; it is MK if $\theta(S) = \max_{S \subseteq S(t)} t$, where $t \to S(t)$ is the cut at time t

whether in prudent or in Nash equilibrium strategies, numerical simulations show that it collects a larger share of the surplus than MK

alternative definitions: the lowest bidder *i* chooses any S_i such that $\theta(S_i) \leq x_j$: achieves the same guarantees and is more balanced

version for bads $\mathcal{M}^{-}(\Omega)$: the highest bidder *i* can choose any share S_i such that $\theta(S_i) \geq x_i$

example n = 2; $\omega = (1, 1)$ with $\theta(x, y) = \frac{1}{2}(x + y)$ for $u(x, y) = \min\{x, y\}$: $minMax(u; 2) = 0 < \Gamma_2^{\theta}(u) = u(\frac{1}{3}\omega) \le Maxmin(u; 2) = u(\frac{1}{2}\omega)$

for
$$v(x, y) = \max\{x, y\}$$
:
 $\min Max(v; 2) = u(\frac{1}{2}\omega) \le \Gamma_2^{\theta}(v) = u(\frac{2}{3}\omega) \le Maxmin(v; 2) = u(\omega)$
so that $(\Gamma_2^{\theta}(u), \Gamma_2^{\theta}(v))$ is a fair Pareto optimal utility profile at the profile (u, v) .
Agent 1 bids $\frac{1}{3}$: if she wins she picks $(\frac{1}{3}, \frac{1}{3})$, if she loses she is guaranteed at
least $\frac{1}{3}$ of each good
Agent 2 also bids $\frac{1}{3}$ and chooses $(\frac{2}{3}, 0)$ or is guaranteed at least $\frac{2}{3}$ of some
good.

a discrete example: n= 2, eight balls a,b,\cdots,h

agent 1's utility: largest number of lexicographically adjacent balls

agent 2's utility: largest number of adjacent balls for the order a, e, c, g, b, f, d, h

benchmark: $\theta(S) = |S|$ who needs the smallest number of balls

for both agents, the prudent bid is 3 or 2 and

$$minMax(u_i) = 1 < \Gamma_2^{\theta}(u_i) = 2 \leq Maxmin(u_i) = 4$$

here (3,3) is a Pareto optimal utility profile

the B&C $_n^{\theta}$ rule: definition for n agents

Step 1 each agent i bids $x_i^1 \in [0, 1]$

(one of) the winners (lowest bidders), 1, chooses S_1 s. t. $\theta(S_1) \leq x_1^1$

Step 2 each agent $i \geq 2$ bids $x_i^2 \in [x_1^1, 1]$

(one of) the winners, 2, chooses $S_2 \subseteq \Omega \setminus S_1$ s. t. $\theta(S_1 \cup S_2) \leq x_2^2$

Step n-1: the two remaining agents bid $x_i^{n-1} \in [\sum_{1}^{n-2} x_j^j, 1]$

the winner, n-1, chooses $S_{n-1} \subseteq \Omega \setminus \bigcup_{1}^{n-2} S_j$ s. t. $\theta(\bigcup_{1}^{n-1} S_j) \leq x_{n-1}^{n-1}$

the last agent gets $S_n = \Omega \diagdown \cup_1^{n-1} S_j$

the B&C Welfare Guarantee for general \boldsymbol{n}

$$\Gamma^{ heta}_n(u,\Omega) = \max_X \min_{1 \leq k \leq n} u^*(x^{k-1};x^k)$$

where X is any weakly increasing sequence $0 = x^0 \le x^1 \le x^2 \le \cdots \le x^n = 1$, and for any y, z s.t. $0 \le y \le z \le 1$, we define

$$u^*(y;z) = \min_{\theta(S) \le y} \max_{T \subseteq \Omega \setminus S, \theta(S \cup T) \le z} u(T)$$

for instance

$$\Gamma_{3}^{\theta}(u,\Omega) = \max_{0 \le x^{1} \le x^{2} \le x^{3} \le 1} \min\{u^{+}(x^{1}), u^{*}(x^{1}; x^{2}), u^{-}(x^{2})\}$$

Theorem repeating the same three points

take home points

- we generalise both the Divide and Choose and the Moving Knife rules
- our D&C_n rule requires only equi-partitions and "like" reports; it applies to the maximal domain of continuous utilities and respects the privacy of preferences just like D&C₂
- our versatile $B\&C_n^{\theta}$ rules allow great flexibility in the choice of θ , and preserve the simplicity and anonymity of MK; they only apply to co-monotone preferences

Thank You

.